
LogicKit: Bringing Logic Programming to Swift
Dimitri Racordon
University of Geneva

Centre Universitaire d’Informatique
Switzerland

dimitri.racordon@unige.ch

Didier Buchs
University of Geneva

Centre Universitaire d’Informatique
Switzerland

didier.buchs@unige.ch

ABSTRACT
Anew trend in programming languages is tomergemultiple paradigms,
rather than focusing on one as it was customary in the past. Most
modern languages provide native support for imperative and func-
tional programming, object-orientation and even concurrency. The
typical mechanism used to blend heterogeneous language concepts
is to rely on functions. Functions are a very well understood, usually
offer an excellent abstraction over diverging models of computation,
but are unsuitable to interface logic programming, unfortunately.
Embedding a full logic programming language into a host is also
unsatisfactory, as it impedes the ability to make data flow from one
paradigm to the other.

As an answer to these issues, we propose LogicKit, a library
that aims to bridge the gap between logic programming and other
traditional paradigms. LogicKit is a Prolog-inspired language that
blends seamlessly into Swift. Predicates are first-class objects in
the host language and data can flow in and out of a logic program,
without the need for any data serialization/parsing. Our framework
is distributed in the form of a Swift library that can be imported
in any Swift project effortlessly. We elaborate on our motivation
for developing LogicKit and present the library by the means of
examples.

CCS CONCEPTS
• Software and its engineering → Constraint and logic lan-
guages; Software libraries and repositories.

KEYWORDS
logic programming, domain specific language, embedded language,
multi-paradigm programming, swift, prolog

ACM Reference Format:
Dimitri Racordon and Didier Buchs. 2020. LogicKit: Bringing Logic Program-
ming to Swift. In Companion Proceedings of the 4th International Conference
on the Art, Science, and Engineering of Programming (<Programming’20>
Companion), March 23–26, 2020, Porto, Portugal. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3397537.3399575

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3399575

1 INTRODUCTION
The last decade has seen the birth of numerous new programming
languages. Swift was first released to the public in 2014, Rust ap-
peared in 2010 and Kotlin in 2011, just to cite a few. A key feature
of these new languages is that they merge multiple programming
paradigms, rather than focusing on a single one, as it was once
customary. This trend is obviously positive. Traditional “old-style”
languages such as Haskell (functional), Java (object-oriented) or
Prolog (logic) tend to force developers’ to use ill-suited abstrac-
tions for problems that do not perfectly fit the offered paradigm. In
contrast, in a modern multi-paradigm language, one may leverage
object-orientation to classify data and hide implementation details,
while at the same time using functional reactive programming [6]
to handle graphical interfaces. It appears that this versatility is so se-
ducing that even older languages are now merging new paradigms
as well [4, 8].

Although object-orientation, functional programming and to a
slightly lesser extent concurrency are usually taken for granted,
logic programming is very rarely listed in the features of these new
multi-paradigm languages. Logic programming [5] is a paradigm
in which a program is written as a description of the problem to
solve, rather than as a description of the steps to solve it. The
beauty of logic programming is that one no longer has to tell how
to compute a result, but only to describe its constraints. Hence, this
approach is particularly useful to quickly prototype and implement
backtracking search algorithms (e.g. a type solver).

Sadly, the lack of support for logic programming in contempo-
rary language leaves this paradigm mostly unknown to mainstream
developers. Besides, interoperability between logic programming
languages and other languages is also challenging. The traditional
approach to interoperability is to rely on a foreign function interface
(FFI) as the bridging mechanism. A FFI allows one to seamlessly call
a function written in another language, and even potentially evalu-
ated by a different runtime. While this technique may pose some
issues related to memory management, solutions to tackle them
are well known [2]. Unfortunately, FFIs are usually not suitable to
plug a logic programming language into a traditional one, because
they do not share the same concept of function. One does not call a
function in a logic program, but rather queries the system to check
the satisfiability of some formula. Furthermore, the representation
of a term in the former has typically no direct equivalent in the
latter. In other words, exchanging data between the two languages
often requires a sizable adaptation effort.

https://doi.org/10.1145/3397537.3399575
https://doi.org/10.1145/3397537.3399575

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Dimitri Racordon and Didier Buchs

This short paper introduces LogicKit, a library that aims to bridge
the gap between logic programming and the other paradigms of-
fered by the Swift programming language. LogicKit is a Prolog-
inspired language that blends seamlessly into Swift. Its main im-
plementation challenge is to offer a seamless experience between
the two languages. Therefore, it does not attempt to simply bring
a Prolog interpreter into Swift (as JIProlog [1] or Tau Prolog [9],
for instance). Instead, data can be freely exchanged and referred
to from one language to the other, including predicates. Further-
more, in an effort to maximize its usability, LogicKit is provided
as a pure Swift library, so that it can be imported just as any
other regular library. It is fully compatible with an out-of-the-
box Swift compiler, and does not necessitate the installation of
an external tool or library. The remainder of this paper elaborates
on our motivations and design decisions. LogicKit’s sources are
distributed under the MIT License and are available on GitHub
(https://github.com/kyouko-taiga/LogicKit).

2 MOTIVATIONS
A logic program is a set of relations that describe facts and rules
about the problem to solve, in the form of logical statements. Con-
sider for instance the following Prolog program:
1 add(zero, Y, Y).

2 add(succ(X), Y, Z) :- add(X, succ(Y), Z).

This program describes the addition on natural numbers, using
Peano arithmetic. It states that adding zero to a number Y is equal
to Y, and that if one can conclude that adding the successor of X to
a number Y is equal to Z, then one can also conclude that adding
X to the successor of Y is equal to Z. The program only describes
our knowledge. In logic programming, computation is expressed
through queries over this knowledge. For instance, one could ask
all pairs of operands whose sum is two with the following query:

1 add(X, Y, succ(succ(zero))).

A query is a logical statement. In the above, X and Y are logical
variables, for which a Prolog interpreter will search values that
satisfy the statement. Since there is not a single answer to this
query, one can iterate over each valid answer, and thus retrieve the
set of pairs whose sum is two.

The difficulty of marrying this programming style to more tra-
ditional paradigms stems from the mismatch between queries and
functions. A query is neither a function nor a function call, but
rather the description of a goal that an interpreter has to satisfy.
Hence, FFIs are de facto disqualified.

The most straightforward way to use a logic program within an-
other environment is to wrap an interpreter. The developer writes a
logic program as a separate file, or directly within the host language,
typically as a character string, or using more elaborate techniques
such as language boxes [3]. This program and the queries thereupon
are sent to the interpreter, which sends results back to the host
language. Although simple, this approach compels the developer to
deal with two different syntaxes, increasing her cognitive overhead.
More importantly, it does not provide an obvious way to exchange
data from one language to the other. This usually results in a high
implementation cost to write user-friendly adapters to generate
inputs for the interpreter and parse its outputs, which naturally

comes with the usual challenges of data serialization. The following
Javascript program illustrates an example, using the Tau Prolog:
1 let session = pl.create()

2 session.consult(

3 "add(zero, Y, Y)." +

4 "add(succ(X), Y, Z) :- add(X, succ(Y), Z).")

5 session.query("add(X, Y, succ(succ(zero))).")

6 let subst = null

7 session.answer((s) => { subst = s })

8

9 console.log(subst.links["X"])

10 // Prints "Term { id: "zero", ..."

11 console.log(subst.links["Y"])

12 // Prints "Term { id: "succ", ..."

The logic program is expressed in the form of a simple character
string, which does not offer any convenient way to manipulate the
relations. Tau Prolog returns query results in the form of a substitu-
tion table that maps logic variables onto terms, which is provided
as an argument to the callback given to session.answer. Terms are
automatically parsed into Javascript objects, alleviating the burden
of extracting results from the interpreter’s answer. Nonetheless,
the structure and content of these terms depends entirely on the
logic program, therefore providing little support to manipulate data
defined within the host language1.

3 LOGICKIT
This section introduces LogicKit through a series of examples. For
spatial reasons, we focus only on the core features of the library.
A more comprehensive introductory tutorial, as well as the user
manual, are available on GitHub.

Like Prolog, LogicKit revolves around a knowledge base (or data-
base) of relations that can be queried to “prove” a given statement.
Three constructs are provided:

• facts, that denote axioms,
• rules, that denote logical deductions, and
• literals, that denote atomic values.

A knowledge base ismerely a collection of such constructs. Consider
for instance the following program:

1 enum Bird { case ostrich, pelican, swift }

2

3 let heavier = "heavier"/2

4 let kb: KnowledgeBase = [

5 heavier(Bird.ostrich, Bird.pelican),

6 heavier(Bird.pelican, Bird.swift),

7]

This program declares a knowledge base made of facts and liter-
als which specifies a weight relation between birds. A predicate
heavier is declared at line 3, and defined with two facts at lines 5
and 6. We borrow from Prolog’s syntax, so that name/n designates
a predicate name with an arity of n. Both facts refer to literals. No-
tice that these literals are built from Swift values, and not from a

1The framework does provide specific predicates to interact with Javascript though
callbacks. While this allows data to flow from one language to the other, we argue that
this approach is inconvenient.

https://github.com/kyouko-taiga/LogicKit

LogicKit: Bringing Logic Programming to Swift <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

textual representation. In fact, a literal can be built from a value of
any Swift type for which an equality relation is defined.

The knowledge base can be queried as follows:

1 let answers = kb.ask(

2 heavier(Bird.ostrich, Bird.pelican))

3 print(answers.next() != nil)

4 // Prints "true"

The above query only checks a fact, which is indeed defined in the
knowledge base. Note that the askmethod does not returns a set of
answers. Although it is not the case in the above example, the reason
is that a query may have multiple answers, which are computed
lazily. If the answer set is empty, then the query is unsatisfiable.

One can obtain more interesting results by using logic variables
and let LogicKit find the proper values to satisfy a query. For in-
stance, the following query asks for the bird that is heavier than a
swift:
1 let x: Term = .var("x")

2 let answers = kb.ask(heavier(x, Bird.swift))

3 print(answers.next()!)

4 // Prints "["x": pelican]"

We start by creating a logic variable x, which is then used as argu-
ments to the predicate heavier/2 to create a query. The set returned
by the method ask contains a single answer, given in the form of a
dictionary-like data structure mapping the logical variable x to its
corresponding value.

The true power of logic programming comes from the ability to
deduct answers from a given system. In the above example, only
one result is returned, although one could easily deduce that if an
ostrich is heavier than a pelican, then it is also heavier than a swift.
Fortunately, we can enrich the knowledge base to allow LogicKit
to make such deductions. Consider for the following program:

1 let heavier = "heavier"/2

2 let faster = "faster"/2

3 let a: Term = .var("a")

4 let b: Term = .var("b")

5 let c: Term = .var("c")

6 let kb: KnowledgeBase = [

7 heavier(Bird.ostrich, Bird.pelican),

8 heavier(Bird.pelican, Bird.swift),

9 heavier(a, c)

10 |- heavier(a, b) && heavier(b, c),

11 faster(a, b) |- heavier(b, a),

12]

13

14 let x: Term = .var("x")

15 let answers = kb.ask(faster(x, Bird.ostrich))

Two rules are added, respectively defining the transitivity of the
heavier/2 predicate, as well as a faster/2, based on the assump-
tion that the flying speed of a bird is inversely proportional to its
weight2. Thus, running the query faster(x, Bird.ostrich) will
yield two results, indicating that both the pelican and the swift are
faster than the ostrich.

2We kindly ask bird enthusiasts to forgive such a dubious assumption.

Recall that all constructions are first-class Swift objects, which
can be created and manipulated as any other value. Hence, one may
very easily create a knowledge base from some data available to
the host language, for instance obtained from a distant server:

1 let movie = "movie"/3

2 server.fetch("/movies/") { data in

3 let k = KnowledgeBase(

4 knowledge: data.map { m in

5 movie(m.name, m.duration, m.rating)

6 })

7 }

The above example retrieves a collection of movie data from a fictive
API and builds a knowledge base containing information extracted
from the fictive API’s response.

As knowledge bases are also first-class Swift objects, one can eas-
ily insert and remove relations from them, effectively reproducing
the behavior of Prolog’s support for metaprogramming. We argue
that this approach is even cleaner, as it is easier to debug. Since the
modification of the knowledge base is expressed within the host
language, one can leverage the latter’s debugging tools to observe
all mutations.

Another way to create interactions between the logic program
and the host language is by leveraging literal values. Internally,
LogicKit represents predicates as terms. The name of the predicate
corresponds to the name of a term, while arguments are encoded
as subterms. This representation lets LogicKit’s resolution engine
use unification [7] to determine the value of each logic variable.
However, representing all data structures and operations thereupon
as predicates can be cumbersome, in particular if such data struc-
tures are to be later manipulated by the host language in a more
traditional way. LogicKit provides a built-in predicate satisfies/1
to address this issue. This predicate accepts a regular Swift func-
tion representing the predicate’s semantics. Unlike other predicates,
satisfies/1 cannot be used to infer the value of a logic variable,
but it can be used to check if it satisfies a predicate written in pure
Swift. Recall that literals can be built from any value whose type
defines an equality relation. Hence, a common use-case is to use
satisfies/1 to check properties that are not defined as a logical
relation on a literal. Consider for instance the following example:

1 protocol AST {}

2 struct Id: AST, Hashable {

3 let name: String

4 }

5

6 let isAST = "isAST"/1

7 let a: Term = .var("a")

8 let kb: KnowledgeBase = [

9 isAST(a) |- satisfies { t in

10 t.unwrap() is AST

11 }

12]

13

14 let answers = kb.ask(isAST(Id(name: "foo")))

In the above program, the predicate isAST/1 holds if and only if its
argument’s type conforms to the protocol AST.

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Dimitri Racordon and Didier Buchs

4 CONCLUSION
We have presented LogicKit, a Swift library that aims to bridge the
gap between logic programming and other traditional paradigms.
Rather than embedding an interpreter for a logic programming
language into Swift, LogicKit provides the tools to write a logic pro-
gram that blends seamlessly with its host language. Consequently,
the host environment does not have to rely on data serialization
to interact with an interpreter. Instead, data can flow effortlessly
in and out of a logic program. We have introduced LogicKit and
its features by the means of simple examples. We purposely used
a syntax reminiscent to Prolog to demonstrate that our library al-
lows to write clean logic programs. Nonetheless, all constructions
are first-class Swift object, which can be manipulated as any other
value by the host language.

Perspective for future work include a better support for static
type checking. LogicKit has been developed with Prolog in mind,
which is itself a dynamic language. However, Swift offers a power-
ful type system that could be leveraged to write safer programs and
remove the need for most of the runtime type checks that the li-
brary currently performs. In particular, typing predicate arguments
and logic variables could provide an excellent tool to detect typos
and other careless mistakes. Other improvements relate to the li-
brary’s expressiveness. LogicKit provides far less so-called built-in
predicates than a full-fledged logic programming language. As dis-
cussed in Section 3, some might not be necessary or even desired.
Nonetheless, the addition of some support to control backtracking

(e.g. Prolog’s cut) could simplify the expression of problems more
easily expressed with negation.

LogicKit is currently used by Bachelor students, in the context
of a course on language semantics. Its sources are distributed under
the MIT License, and are available on GitHub (https://github.com/
kyouko-taiga/LogicKit).

REFERENCES
[1] Ugo Chirico. 2015 (accessed December 1, 2019). JIProlog. JIProlog. http://www.

jiprolog.com
[2] Marcus Crestani. 2010. Foreign-Function Interfaces for Garbage-Collected Program-

ming Languages. Technical Report. Eberhard-Karls-Universität.
[3] Lukas Diekmann and Laurence Tratt. 2019. Default disambiguation for online

parsers. In International Conference on Software Language Engineering, SLE 2019,
Athens, Greece, October 20-22, 2019, Oscar Nierstrasz, Jeff Gray, and Bruno C.
d. S. Oliveira (Eds.). ACM, New York, 88–99. https://doi.org/10.1145/3357766.
3359530

[4] Jaakko Järvi and John Freeman. 2008. Lambda functions for C++0x. In Symposium
on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March 16-20, 2008, Roger L.
Wainwright and Hisham Haddad (Eds.). ACM, New York, NY, USA, 178–183.
https://doi.org/10.1145/1363686.1363735

[5] John W. Lloyd. 1987. Foundations of Logic Programming, 2nd Edition. Springer,
Berlin, Germany. https://doi.org/10.1007/978-3-642-83189-8

[6] Fatih Nayebi. 2017. Swift Functional Programming (2nd ed.). Packt Publishing,
Birmingham, UK. https://books.google.ch/books?id=70EwDwAAQBAJ

[7] Jörg H. Siekmann. 1989. Unification Theory. Journal of Symolic Computation 7,
3/4 (1989), 207–274. https://doi.org/10.1016/S0747-7171(89)80012-4

[8] Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft. 2014. Java 8 in Action: Lamb-
das, Streams, and Functional-style Programming (1st ed.). Manning Publications
Co., Greenwich, CT, USA.

[9] José Antonio Riaza Valverde. 2019 (accessed December 1, 2019). Tau Prolog. JIPro-
log. http://tau-prolog.org

https://github.com/kyouko-taiga/LogicKit
https://github.com/kyouko-taiga/LogicKit
http://www.jiprolog.com
http://www.jiprolog.com
https://doi.org/10.1145/3357766.3359530
https://doi.org/10.1145/3357766.3359530
https://doi.org/10.1145/1363686.1363735
https://doi.org/10.1007/978-3-642-83189-8
https://books.google.ch/books?id=70EwDwAAQBAJ
https://doi.org/10.1016/S0747-7171(89)80012-4
http://tau-prolog.org

	Abstract
	1 Introduction
	2 Motivations
	3 LogicKit
	4 Conclusion
	References

