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Abstract
Aliasing is a vital concept of programming, but it comes with
a plethora of challenging issues, such as the problems re-
lated to race safety. This has motivated years of research, and
promising solutions such as ownership or linear types have
found their way into modern programming languages. Un-
fortunately, most current approaches are restrictive. In par-
ticular, they often enforce a single-writer constraint, which
prohibits the creation of mutable self-referential structures.
While this constraint is often indispensable in the context
of preemptive multithreading, it can be worked around in
the case of single threaded programs. With the recent resur-
gence of cooperative multitasking, where processes voluntar-
ily share control over a single execution thread, this appears
to be interesting trade-off. In this paper, we propose a type
system that relaxes the usual single-writer constraint for
single threaded programs, without sacrificing race safety
properties. We present it in the form of a simple reference-
based language, for which we provide a formal semantics,
as well as an interpreter.
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1 Introduction
Aliasing, which denotes situations where multiple names (or
aliases) actually refer to the same object or memory loca-
tion, is a vital programming concept. Some form of aliasing
is very often indispensable in realistic programming lan-
guages: not only does it allow to save space and time by
avoiding unnecessary data duplication, it is also paramount
to efficiently represent shared and self-referential structures.
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1: function sieve(inout arr)
2: for x in arr do
3: for i := 0 to arr.length do
4: if (arr[i] , x) and (arr[i] mod x = 0) then
5: arr.remove(i)
6: end if
7: end for
8: end for
9: end function

Figure 1. A poorly designed implementation of the sieve
of Eratosthenes. Because the array arr is mutated while
iterated over, the program is likely to behave unexpectedly.

Unfortunately, these benefits come at the price of concurrent
mutation1. An object or memory location may be mutated
(i.e. changed) without other references being aware of that
mutation, which in turn may violate invariants, cause un-
expected behavior or even crash the program altogether.
One well known situation highlighting this problem usu-
ally occurs when mutating a structure, while iterating over
it [33]. Consider for example the implementation of the al-
gorithm of the sieve of Eratosthenes presented in Figure 1.
Depending on the iteration semantics of the language in
which we would write this algorithm, we could get very
different results. For instance, Python will raise an “out-of-
bound” exception at line 4, because the loop at line 3 will
generate indices past the end of the array if a single value is
removed. Java will do a little better, since its collections are
programmed to detect that problem at runtime [37]. There-
fore, a ConcurrentModificationExceptionwill be thrown
as soon as it reaches line 5. Swift will always produce cor-
rect results, because its for-each style iterators keep internal
copies of the collection over which they iterate. As a result,
the values x will take at line 2 will actually be picked from
a different array than that from which non-prime numbers
are removed. But maybe more worrisome are semantics that
could silently yield incorrect results. This is the case of C++,
whose vector iterators are simply pointers to contiguous
memory. Hence, removing a value with an index preced-
ing that of the iterator invalidates the latter. We argue that
none of these implementations are satisfactory, and that the
problems we highlight should be detected statically.

1 Note that here we do not limit the term “concurrent” to the context of
multithreaded applications. Instead, we consider that any pair of references
to the same object are concurrent if their lifetimes overlap.
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It is interesting to note that aliasing is only harmful when
mutation is involved. Indeed, even in a traditional multi-
threaded environment, concurrent reads to the same object
or memory location are harmless. From that observation, it
is easy to see how guarantees on the immutability of shared
objects can offer an invaluable help to determine the cor-
rectness of a program. Most modern mainstream program-
ming languages acknowledge this observation, and propose
built-in mechanisms to declare and/or ensure some level of
immutability. For instance, Swift statically ensures the transi-
tive immutability of its structure instances, unless explicitly
declared otherwise. Since ECMAScript 2015, JavaScript lets
references be declared so that their reassignment is disal-
lowed. Worth mentioning are also the numerous tools and
libraries which provide support for better immutability han-
dling in languages that do not support it natively [42, 45].
Even though this evolution is very positive, there is still

room for improvement. Mechanisms to ensure immutabil-
ity (and semantics thereof) can greatly vary from language
to language, and are often insufficient. Immutability con-
straints are too often offered as an opt-in, therefore not giv-
ing a strong incentive for programmers to adopt it. Indeed,
in sectors with very short deadlines such as web and mobile
application development, bypassing good practices in favor
of faster development cycles is not uncommon [22]. Paradox-
ically, languages that advocate for a very constrained built-in
immutability model, such as Rust[27] or Cyclone[40], have
difficulty seducing mainstream developers, because of the
complexity they involve in implementing otherwise simple
patterns [20]. The fact is, safe mutation of aliased objects
is inherently complex to handle, especially with respect to
concurrency. The existence of a single mutable reference
can threaten a program’s correctness entirely. Yet assuming
all aliased objects to become and remain immutable after a
certain point is cumbersome at best and impractical at worst
[26]. For instance, modeling a graph-like structure in Rust is
known to be a non-trivial problem [7], whereas it is a school
example in mainstream programming languages such as C
or Java. We therefore can see a clear trade-off drawing it-
self between defensive approaches that barely or completely
ban mutation of aliased objects, and more relaxed ones that
focus on less invasive mechanisms, but push the burden of
preventing non-obvious problems onto the developer.

Another interesting trend is the resurgence of cooperative
multitasking [28], also known as non-preemptive multitask-
ing. In this concurrency paradigm, processes voluntarily
transfer control between each other, whereas in the more
widespread preemptive alternative, this task is left to the
operating system. The advantage is that context switching
points are predictable, making reasoning about the control
flow of a program easier. In particular, one can rely on the
fact that a given portion of code will run uninterrupted, elim-
inating the possibility of another process violating invariants.

The reader may remark this concept is reminiscent of trans-
actional memory [16]. Cooperative multitasking enables the
design of concurrent programs on single threaded environ-
ments, which not only can prove beneficial performance-
wise [24], but also significantly reduces the need for locks
and other synchronization mechanisms, and opens the door
for more relaxed immutability models.

This paper proposes a type system that leverages the local-
ity offered by cooperation over a single threaded (yet possi-
bly concurrent) environment, based on the observation that
most existing approaches are overly defensive in that con-
text. Our goal is to relax the usual single-writer constraint,
so as to allow mutable self-referential data structures (e.g.
doubly linked lists) to be represented. This is not possible in
more constrained type systems, such as that of (“safe”2) Rust
for instance, without resorting to elaborate workarounds
or bypassing the type checker altogether. Nevertheless, our
type system does not sacrifice other usual guarantees on
immutability. Objects referenced by immutable references
are guaranteed to remain immutable for the lifetime of said
references. We illustrate our approach in the form of a sim-
ple programming language which we call SafeScript, and
present various examples to highlight interesting features.
An implementation of a compiler for SafeScript, as well as
various example programs showcasing the type system, are
available at https://github.com/kyouko-taiga/SafeScript.

Outline The remainder of this paper is organized as fol-
lows: Section 2, presents background on cooperative multi-
tasking (through the lens of JavaScript) and different forms
of immutability, before discussing related work in Section
3. An informal introduction to SafeScript’s type system is
given in Section 4, which is then formalized in Section 5 and
6. Finally, Section 7 concludes.

2 Preliminaries
We now introduce the concepts we will discuss throughout
the remainder of this paper.

2.1 Cooperative Multitasking
In this section, we discuss the notion of cooperative multi-
tasking through the lens of an inherently cooperative lan-
guage: Javascript. In this language, all variables are refer-
ences (i.e. pointers) to heap-allocated memory blocks, which
are automatically garbage collected [43]. In the remainder of
this paper, we will use the term object to denote the memory
occupied by some value (e.g. a number), and reference to de-
note an alias (or name) that refers to an object. For instance,
in the statement let x = "Hello, World!", x is a refer-
ence on the memory location the object "Hello, World!"
occupies.

2https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
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1 async function load() {

2 const res = await fetch("/img.png")

3 const data = await res.json()

4 return data

5 }

Listing 1.A coroutine loading resources (JavaScript). Notice
the use of the async and await keywords. The former
declares an asynchronous function (i.e. a coroutine), while
the latter indicates that the coroutine yields control while
other asynchronous operations are being performed.

As it initially targeted the development of user interfaces,
JavaScript is well suited to event-driven programming. Its
concurrency model is based on an event loop which dis-
patches messages – for instance events – to callback func-
tions whenever are made available to it. These callbacks then
run uninterrupted until completion, sequentially. Except for
a few legacy primitives (whose use is discouraged in modern
JavaScript), all operations are non-blocking. Instead, coop-
eration between said callbacks is advocated. In a nutshell,
cooperative functions (a.k.a. coroutines [19]) should volun-
tarily suspend their execution while waiting for the resource
they need (e.g. some data on a socket) to be available. Their
execution context – in other words, the state of their local
variables – is preserved during these suspensions, so they
can be resumed from the exact point they suspended. It is
interesting to remark that cooperative multitasking actually
bears a lot of similarities with from its preemptive alterna-
tive. Both concurrency models rely on interleaving, with the
difference that context switching points are made explicit in
the former, while they may happen anywhere in the latter.
Listing 1 illustrates a coroutine in JavaScript that loads a
resource from a distant server.

We distinguish between two kinds of coroutine implemen-
tations: stackful coroutines, which can be suspended from
within nested function calls, and stackless coroutines that
cannot. Despite their differences, these two implementations
have the same level of expressiveness [28], and therefore
we will focus on the latter, as it is simpler to implement.
Indeed, a stackless coroutine is, at its core, nothing more
than a regular function with an environment that stores its
execution context, and the point from where it should run
the next time it is resumed. Hence, they can be emulated
on the top of more primitive constructions [35]. Other dis-
tinctions exists between coroutines implementations, but a
comprehensive discussion extends the scope of this paper. A
survey is proposed in [28].

2.2 Immutability Semantics
The term “immutability” can represent vastly different con-
cepts, depending on the programming language. We briefly
introduce these concepts, as well as the terms we will use to

1 const foo = 0

2 foo = 2 // Error: 'foo ' is constant

3 const bar = {}

4 bar.baz = 2 // OK

Listing 2.
Reassignability vs. object immutability (JavaScript). As the
keyword const declares non-reassignable references, the
second line triggers an error, because it attempts to reassign
the variable foo to a new object. However, as it is not paired
with a mechanism to enforce object immutability, the fourth
line is perfectly legal. The object is not reassigned, even if
its value is mutated.

distinguish between them in the remainder of this paper. A
more elaborate discussion is proposed in [32].

Non-Reassignability (Non-)reassignability is a prop-
erty of references, indicating whether or not they may
be reassigned to point to another object, after they
have been assigned once. Preventing reassignability
is usually considered a best practice, as it can help
avoiding obvious programming mistakes. However, it
does not pose any restriction on the value of the object
being referred to by a non-reassignable alias.

Object Immutability Object immutability is a restric-
tion on the value of an object, or more precisely on the
bits stored at a memory location that consitute it. We
can distinguish two types of object immutability: shal-
low immutability, which only prevents the mutation
of the bits an object is made of, and deep immutability,
which also applies to the other objects that constitute
it. In other words, the latter can be understood as the
transitive application of the former to each field of an
object.

Reference Immutability Reference immutability is a
property of references, indicating whether or not the
object (or memory location) it refers to might be mu-
tated through it. In other words, an immutable refer-
ence is an alias through which the object’s mutation
is not allowed. Just as object immutability, reference
immutability can be shallow or deep, that is restricted
to the fields of an object, or transitively applied to
all values whose path contains a deeply immutable
reference.

These three notions are orthogonal to each other. Interest-
ingly, reassignability seems to be more widespread than the
other two in mainstream programming languages. This can
prove problematic for unexperienced developers, as it may
often be confused with object immutability, as showcased in
Listing 2.

3 Related Work
There is a great body of work dedicated to the subject of
aliasing, which materialized into several branches. One that
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is central to our approach is the notion of type permissions
(a.k.a capabilities). Originally proposed as a generalization of
reference (or pointer) annotations [4], various type systems
have been proposed to address a broad spectrum of program-
ming aspects, including uniqueness and immutability [30],
encapsulation [5], safe concurrency [23] or even memory
management [13].
Directly linked is the notion of ownership [29]. Objects

are associated with one [10] or several [8] owners, which
control what part of their owned domain is exposed to other
components [36], and under what policy [31]. Two main
interpretations are commonly offered: owners-as-dominators,
in which all read and write accesses to an object must go
through its owner(s), and owners-as-modifiers, where only
write accesses are restricted. While we do not explicitly rely
on a notion of ownership — that is, objects in our type system
do not have an owner — our approach resembles an owners-
as-modifiers system, where owners may revoke permissions
on the objects they collectively own between each other.

Other ownership schemes have been proposed to address
different concerns, such as owners-as-locks [14], to prevent
concurrent accesses in the context of multithreaded appli-
cations. Just like our own approach, owners-as-locks may
temporary freeze mutable references, so as to avoid concur-
rent mutations. Multiple mutable references are prohibited,
butmutable self-referential structures are expressible, as long
as they expose a single external mutable reference [9]. Our
approach relaxes on the single mutable reference constraint,
as we place ourselves in the context of single threaded appli-
cations, where concurrency is carried out by the means of
cooperative multitasking.

Ownership types are often associated with programming
language that undergo static compilation (e.g. [20, 27, 42]).
If some works have been proposed to include notions of
immutability [1] and uniqueness [15] in dynamic languages,
the general issue is that runtime checks are hard and/or
costly to enforce. Although we present our approach in the
context of an interpreted scripting language, we do not suffer
this problem, as we perform our analysis statically before
the source is processed by an interpreter. Interestingly, this
has became a widespread technique to extends small and
simple languages with more elaborate concepts (e.g. [2, 34]).
Less tightly connected to our work are other approaches

that leverage single-threading to perform static checks on
cooperative programs. A few calculi have been proposed
to support model checking (e.g. [25, 39]). Indeed, as context
switching points are known and vastly less frequent than in a
preemptive setting, the size of the state space of a cooperative
program is far more manageable, enabling the use of classic
model checking and/or testing techniques to ensure safety
properties [6].

1 class Vector2D {

2 let x: mut = 0

3 let y: mut = 0

4 }

Listing 3. Class definition (SafeScript).

4 SafeScript
In this section, we present SafeScript, the language we will
use to showcase our type system. Its specificity is that it
associates objects with permissions, and comes with first-
class mechanisms to transfer or borrow them. For spatial
reasons, we will gloss over the specifics of its syntax, and
rather focus on its semantics, with a particular emphasis on
the the concepts related to aliasing safety.

4.1 Types
SafeScript is an reference-based, imperative programming
language. The language features three built-in types, namely
number, string, and boolean, as well as the possibility to
declare user defined types by the means of class declarations.
Listing 3 gives an example of such declaration. The meaning
of the let and mut keywords will be explained in the next
section.

4.2 Non-Reassignability and Object Immutability
SafeScript’s variable declaration syntax is:

(let|var) name: [cst|mut] [= expression]

The keywords let and var declare non-reassignable and
reassignable references, respectively. A non-reassignable ref-
erence must be bound to an object at its creation, since it can-
not be reassigned later. The qualifiers cst and mut annotate
a variable declaration to specify whether the declared refer-
ence is read-only or read-write. This is a departure from most
reference-based languages, where all variables are read-write
references. In the absence of a qualifier, the declaration is
assumed to be read-only. For instance var foo = Vector(1,
2) declares a reassignable alias foo, but that is not allowed
to mutate the object it refers to. Hence, the statement foo.x
= 3 is illegal here.
The mutability of an object is decided at its creation and

depends on the first reference it is bound to. If the refer-
ence is read-only, then the object is immutable and shall
remain so until its deallocation. If it is read-write, then the
object is mutable, but may be demoted to immutable later
on. SafeScript always enforces deep immutability (Section
2.2). The rationale behind this design choice is that shallow
immutability implicitly creates additional aliases, which in
turn may lead to incorrect assumptions on the absence of
relationships between two objects. An example is given in
Listing 4. Although it is not the case in our current imple-
mentation, performance issues can usually be addressed with
copy-on-write semantics[41].
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1 const productA = {

2 manufacturer: {

3 name: "Thunder LTD",

4 address: "1452 Company blvd",

5 },

6 category: "appliance",

7 }

8 const productB = { ... productA }

9 productB.manufacturer.name = "Spark SA"

10 productB.category = "food"

Listing 4. Example of implicit aliasing due to a shallow copy
(JavaScript). The expression { ...productA } at line 8 is
called object spreading [38], and is the idiomatic way to clone
an object in JavaScript. However, as it performs a shallow
copy, the manufacturer of productB is mutated at line 9,
while its category is left intact at line 10.

4.3 Binding Semantics
Almost all imperative languages feature an assignment op-
erator, whose role is to bind values to variables, or in our
case objects to references. Before concerns for safer aliasing
management reached mainstream programming languages,
there used to be generally only one semantics associated
with that operator. Therefore, each assignment statement
would read as “bind the value on the right to the name on
the left”. Even in a language like C++ which features both
value and pointer types, this semantics remains mostly valid
because the language requires explicit referencing and deref-
erencing. Hence, the C++ statement “a = *b” can be read
as “bind the value pointed by the name b to the name a”. Fea-
turing a single assignment operator seems to have become
the norm, yet modern programming languages no longer
have a single assignment semantics. Take Listing 5, written
in Swift. In this example, while used in seemingly identical
contexts, the binding operator (i.e. “=”) has two different
semantics. Similar issues can be observed in languages that
treat primitive types differently, such as Python or Java.
We assert that overloading the semantics of a single as-

signment operator is harmful to software development, es-
pecially when determining which semantics will be applied
for a particular statement requires an extensive knowledge
of the language. Instead, we advocate for different operators,
with a clear and unambiguous semantics. Following this idea,
SafeScript features two assignment operators: a copy oper-
ator “=” and a borrow operator “&-”. The former copies the
object on referred by the reference on its right, while the
latter copies the reference itself. The term borrow captures
the idea that a reference uses the same access as another one
on a particular object. Therefore, the example of Listing 5
can be rewritten with a completely unambiguous syntax in
SafeScript, as shown in Listing 6.

1 struct Student { var name: String }

2 var x1 = Student(name: "Jane")

3 var x2 = x1

4 x2.name = "Ann"

5 print(x1.name) // Prints "Jane"

6

7 class Teacher { var name: String }

8 var y1 = Teacher(name: "Jane")

9 var y2 = y1

10 y2.name = "Ann"

11 print(y1.name) // Prints "Ann"

Listing 5. Example of overloaded assignment semantics
(Swift). The assignment of line 2 is a copy, while that of
line 9 is a reference copy, the reason being that Swift treats
value (struct) and reference (class) types differently.

1 class Student { let name: mut }

2 let x1: mut = new Student(name = "Jane")

3 let x2: mut = x1

4 x2.name = "Ann"

5 console.log(x1.name) // Prints "Jane"

6

7 let x3: mut &- x1

8 x3.name = "Ann"

9 console.log(x1.name) // Prints "Ann"

Listing 6. Unambiguous assignment semantics (SafeScript).

4.4 Permission Borrowing
So far we have carefully avoided the subject of temporality
and discussed immutability as a permanent state. Of course,
this is unrealistic, since objects should at least be mutable
during their initialization. The classic solution is to consider
an object immutable (deeply or shallowly) only once said
initialization is complete, hence leaving the constructor free
to mutate the object’s fields [17]. The problem with this
approach is that it does not allow for an object to become
immutable at any other point of its lifecycle. Other initializa-
tion schemes, such as multi-phase initialization [12], become
therefore impossible. Another more pernicious problem can
arise when a read-only reference incorrectly assumes im-
mutability of the object it refers to, as it can lead to unde-
tected invariant violations, as outlined in Section 2.2. In a
language such as JavaScript where most errors are silent,
these kinds of problems often prove very difficult to debug,
and can have far reaching consequences. An example is given
in Listing 7.
Type permissions offer one solution to tackle this issue.

A particular reference enjoys privileged permissions to the
object it refers to, such as exclusive read and/or write access,
while other references to the same object do not. The latter
however may borrow privileges [30] for a limited time. Per-
mission borrowing allows us to safely express more complex
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1 const v = [ 3, 7, 2 ]

2 doSomething(v)

3 console.log(v.reduce(add , 0) / v.length)

Listing 7. Example of invariant violation (JavaScript). Since
there is no immutability constraint on the object bound to
v, the function doSomething is free to mutate the array, and
hence could potentially empty it. That would result in an
unexpected result (in this case NaN for Not a Number) at line
3, which in could easily go undetected and cause problems
further in the program.

patterns, such as multi-phase initialization [26] and unicity
of mutable references [18].
A particularity of SafeScript is that permissions are asso-

ciated with objects and references. The intersection of both
provides the actual permissions a reference enjoys on a par-
ticular object. The language features only two permissions:
read-only and read-write. By default, references receive the
read-only permission when they are declared. They obtain
the read-write permission if and only if they are declared
with the mut type qualifier. At their creation, objects inherit
the permission of the reference they are bound to. Read-only
and read-write permissions are borrowed by the means of
the borrow operator “&-”. So as to avoid any additional an-
notation, we use the type on the left side of the operator to
determine which permission is requested. In other words,
if a mutable reference is placed on the left side of a borrow
operator, the statement reads as “borrow a read-write permis-
sion”. Conversely, if an immutable reference is placed on the
left, the statement reads as “borrow a read-only permission”.
We call a reference borrowing a read-only permission an
immutable borrowed reference, and a reference borrowing a
read-write permission a mutable borrowed reference. We use
the phrase borrowed references to designate immutable and
mutable borrowed reference collectively.

SafeScript guarantees the absence of data races by enforc-
ing the following invariant: A reference has eithern read-only
borrows and 0 read-write borrows, or 0 read-only borrows and
m read-write borrows at any given time. It ensures that an
object cannot be referred to by both mutable and immutable
references at the same time, which may be seen as a sort of
contract between an immutable borrow and the reference
they borrow from. Namely, it states that the object pointed by
an immutable reference is guaranteed to remain immutable
(or frozen) during the entire lifetime of the said reference,
even if it borrowed from a mutable one. Incidentally, the
implementation of the sieve of Eratosthenes we presented in
the introduction (in Figure 1) cannot fail under this invariant.
Either the iterator created at line 2 is implemented holding
an immutable borrowed reference on array, in which case
line 5 becomes illegal, or it is implemented creating a copy
of the array, the same way Swift does.

1 var a: mut = 1

2 var b: cst = 2

3 {

4 var c: cst &- a

5 }

6 var d: mut &- a

7 var e: cst &- d // Illegal

Listing 8. Example of (re)borrowed reference (SafeScript).

line a b c d e *a *b
1 r/w, r/o · · · · r/w, r/o ·

2 r/w, r/o r/o · · · r/w, r/o r/o
4 r/o r/o r/o · · r/o r/o
5 r/w, r/o r/o · · · r/w, r/o r/o
6 r/w r/o · r/w · r/w r/o

Table 1. Permissions from Listing 8.
It is easy to see how multiple immutable references are

harmless. But notice that it does not restrict multiple mu-
table references either. This makes sense in the context of
cooperation over a single thread, where write accesses can-
not happen “concurrently”, as long as the reference remains
local to the function (or coroutine) that uses it. We describe
the mechanism to preserve this guarantee below.

Example 4.1 (Borrowing). Listing 8 presents an example
of reference borrowing, and Table 1 shows how the effective
permissions associated with the references and objects are
updated at each line. We abbreviate read-write (resp. read-
only) with r/w (resp. r/o), and we use the notation *a to
designate “the object bound to a”. Since a is declared muta-
ble at line 1, the reference and its bound value receive both
read-write and read-only permissions. Conversely, because
b is declared immutable, it only receives the read-only per-
mission, and so does the object it is bound to. c borrows
an immutable permission on *a at line 4, which strips the
object from its read-write permission, effectively turning a
into an immutable reference. When c goes out of scope at
line 5, the read-write permission of *a is restored, turning a
back to a mutable reference. d borrows a mutable permission
on *a at line 6, which strips the object from its read-only
permission. Line 7 is illegal, since d is a mutable borrow and
hence does not hold a read-only permission. Note that, due
to this borrow, attempting to borrow a immutable at line 7
would also have been illegal.

Notice that SafeScript allows borrows to be performed on
borrowed references, also known as reborrowing. Because
borrowing does not change the permissions of the reference
we borrow from, reborrowing does in fact work the exact
same way as borrowing.

5 Operational Semantics
In this section, we formalize the operational semantics of
SafeScript. For the sake of conciseness, we use only aminimal
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subset of SafeScript, and focus on the permission borrowing
mechanisms. These are sufficient to prescribe safety guaran-
tees with respect to aliasing.

5.1 Notation
We write dom(f ) the subset A′ ⊆ A for which f is defined.
We write f [a 7→ a′] the function that returns a′ for a and
f (x) for any other argument. More formally, ∀x ∈ A,x =
a =⇒ f [a 7→ a′](x) = a′ and ∀x ∈ A,x , a =⇒ f [a 7→

a′](x) = f (x). For instance, if f (0) = 1 and f (1) = 2, then
f [0 7→ 3](0) = 3 and f [0 7→ 3](1) = 2. We abbreviate
f [a 7→ c][b 7→ c] with f [a,b 7→ c].
We use the usual the horizontal bar notation from [21] to

denote sequences. We write |x | to denote the length of the
sequence x , such that |x | = n ⇔ x = x1, . . . ,xn . We write
x i the i-th element of x . Let x be an non-empty sequence,
we write xh |xt the split of x into a head xh = x1 and a
possibly empty tail xt = x2, . . . ,xn , while x + y denotes the
concatenation of x and y, i.e. x1, . . . x |x |,y1, . . . ,y |y | . Finally,
when the context allows it, we overload ∅ to represent the
empty sequence.

5.2 Syntax
Definition 5.1 describes the abstract syntax of the minimal
subset of SafeScript we will use. We call this subset Safe-
Script’s core language.

Definition 5.1 (Core language abstract syntax). Let x de-
note an identifier, the abstract syntax of SafeScript’s core
language is described as:

program p F c + f + s

class. decl. c F class x(x : q)
func. decl. f F func x(x : q) : q {s}

type qualifier q F mut | cst
statement s F var x : q | e ◁ e | return e
expression e F x | e .x | e(x ◁ e) | new e
assign. op. ◁ F = | &-

Our syntax features the common constructs of structured
imperative programming languages. Nevertheless, we draw
the reader’s attention to a few points:

• We do not formalize SafeScript’s support for non re-
assignable (i.e. let) references. This does not other-
wise affect its semantics, since reassignability does not
contribute to aliasing safety.

• Function calls require the passing policy [11] of their
arguments to be explicitly specified. We re-use our
assignment operators (syntactic category ◁) for this
task. Namely, our copy assignment has a pass-by-value
semantics, while our borrow and move operators have
a pass-by-reference semantics.

• We do not formalize coroutines, as they can be emu-
lated on top of our core language [35].

In the remainder of this section, we use P to denote the
set of programs produced by the syntactic category p (from
Definition 5.1). Similarly, we use E to denote the set of ex-
pressions produced by category e , and X to denote the set
of identifiers.

5.3 Semantics
We must be able to explicitly differentiate between objects
and references (i.e. values and locations), so that we may
accurately describe the two assignment semantics we in-
troduced above. To that end, we use L to denote the set of
memory locations, and V the set of values a program may
manipulate. The latter can be described as follows:

• unit ∈ V is a built-in value (e.g. a number).
• Letx1, . . . ,xn ∈ X be variable names and s be sequence
of statements, λx1, . . . ,xn · s ∈ V is a function.

• Let x1, . . . ,xn ∈ X be variable names and l1, . . . , ln ∈

V be memory locations, [x1 → l1, . . . ,xn → ln] ∈ V
is a class instance.

We encode class constructors as functions with an empty
body. For instance, the constructor of the Student class de-
fined in Listing 6 would be a value λname ·∅.

Definition 5.2 (Evaluation Context). An evaluation context
is a pair E = ⟨L,V⟩ where:

• L : X → L is a partial function that map variable
names to memory locations, and

• V : L → V is a partial function that maps memory
locations to values.

SafeScript’s big step operational semantics is presented
in Figure 2. We write [[e, E]] the evaluation of an expression
e in an evaluation context E, which produces a memory
location l and an updated context E ′. We use the symbol
⊥ ∈ L to denote the uninitialized memory location (i.e. the
“null pointer”).

Most rules are quite straightforward, so we will only focus
on the complex ones. Notice that SafeScript’s operational
semantics does not take type permissions into account. Aswe
mentioned earlier, the type correctness (w.r.t. aliasing safety)
is checked statically before the program is executed. We do
not define the rules for functions and classes declarations.
Instead, we assume class and functions to be already defined
in the initial evaluation context. An example is provided
below.

Example 5.3. Consider the following program

1 func id(a: cst): cst {

2 return a

3 }

4 class Student {

5 let name: mut

6 }
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The initial evaluation context E = ⟨L,V⟩ of this program
is defined such that:

V(L(id)) = λa · return a

V(L(Student)) = λname ·∅

Assignments (Copy) gives the semantics of SafeScript’s
copy assignment. The left operand must represent a memory
location ([[el , E]] = ll , E ′), in which the value at the memory
location represented by the right operand will be copied.
Notice that the right operand is evaluated first, which is
necessary in case it uses the value currently bound to the left
operand (e.g. in a function call). We use a function copyL :
V → V to denote the transitive (a.k.a. deep) copy of a value. It
is equivalent to the identity for built-in values and functions,
but applied recursively on class instances. More formally:

x = [x1 → l1, . . . ,xn → ln] vi = L(li )

copyL(x) = [x1 → copyL(v1), . . . ,xn → copyL(vn)]

(Bind) and (Bind-m) give the semantics of the borrow opera-
tor, for when the left operand is a reference, or the member
of a class instance, respectively. In the former case, it suffices
to (re-)assign the memory location to which the reference is
bound in the context. The approach is ultimately the same
in the latter case, except that the reference to be assigned
is actually the class instance’s member. Note that the up-
date of the class instance in the conclusion of the rule (i.e.
[x → l1, . . . ]) only updates the value of x and leaves other
members unchanged.

Variable Declarations (Var) describes the semantics of
variable declarations. The premise l < dom(V) identifies a
fresh memory location to which x should be bound. Notice
that V is updated so that l is mapped to a built-in value,
namely unit. This actually represents null, that is the ab-
sence of any value.

Function Calls As mentioned before, we reuse the assign-
ment operators to specify the parameter passing policy on
function calls. Similarly, we reuse the semantics of those
operators to bind the value of function arguments, as de-
scribed by the premise [[yi ◁ ei , Ei−1]] = ⊥, Ei in (Call). We
write s[x1 := y1, . . . ,xn := yn] to denote the substitution of
the occurrences of xi for yi in s . This renaming makes sure
arguments do not clash with other variable names already in
the context, since all yi are assumed to be fresh. Incidentally,
this also supports recursive calls. The order in which the
arguments are assigned also matters, so as to handle possible
side effects. Once the arguments are bound, the body of the
function is evaluated with (Seq), until a return statement
is reached and the memory location of the function return
value is produced, as described in (Return).

5.4 Illustrating Concurrent Mutation
We now present an example of concurrent mutation through
the lens of the semantics we have just presented. Consider

x ∈ X l = L(x)

[[x , ⟨L,V⟩]] = l , ⟨L,V⟩
(Name)

[[e, E]] = le , ⟨L,V⟩ V(le ) = [x → lx , . . . ]

[[e .x , E]] = lx , ⟨L,V⟩
(Select)

[[e, E]] = le , ⟨L0,V0⟩ V0(le ) = λx1, . . . ,xn · s
∀i ∈ {1, . . . ,n}, [[yi ◁ ei , ⟨Li−1,Vi−1⟩]] = ⊥, ⟨Li ,Vi ⟩

[[s[x1 := y1, . . . ,xn := yn], ⟨Ln ,Vn⟩]] = lr , E
′

[[e(x1 ◁ e1, . . . xn ◁ en), E]] = lr , E
′

(Call)

x ∈ X V(L(x)) = λx1, . . . ,xn ·∅
l , l1, . . . ln < dom(V)

v = [x1 → l1, . . . ,xn → ln]

[[new x , ⟨L,V⟩]] = l , ⟨L[x 7→ l],V[l 7→ v]⟩
(New)

x ∈ X l < dom(V)

[[var x : q, ⟨L,V⟩]] = ⊥, ⟨L[x 7→ l],V[l 7→ unit]⟩
(Var)

[[e1, E]] = l1, E
′ [[e0, E

′]] = l0, ⟨L,V⟩

[[e0 = e1, E]] = ⊥,
〈
L,V[l0 7→ copyL(V(l1))]

〉
(Copy)

x ∈ X [[e, E]] = l , ⟨L,V⟩

[[x &- e, E]] = ⊥, ⟨L[x 7→ l],V⟩
(Bind)

[[e1, E]] = l1, E
′ [[e0, E

′]] = l0, ⟨L,V⟩

V(l0) = [x → lx , . . . ]

[[e0.x &- e1, E]] = ⊥, ⟨L,V[l0 7→ [x → l1, . . . ]]⟩
(Bind-m)

[[e, E]] = l , E ′

[[return e, E]] = l , E ′
(Return)

s = sh |st [[sh , E]] = lh , E
′ [[st , E

′]] = lt , E
′′

[[s, E]] = lt , E
′′

(Seq)

Figure 2. Operational semantics

the program in Listing 9 which, if executed, will fail at line 9,
while attempting to divide a number by zero. The problem
is that value p.x is mutated one line before, since x is bound
to the same object. This can be observed under SafeScript’s
semantics if we pay attention on the way arguments were
passed to the function f, as well as the constructor of Point.
In both instances, we used a borrow assignment (i.e. “&-”)
rather than a copy, so rules (Bind) and (Bind-m) applied. The
first bound a to L(x) and the second bound p.x to the same
location.

The goal of our type system, which we formalize in the fol-
lowing section, is to statically detect and ultimately prevent
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1 class Point { var x; var y }

2 func f(a, b) {

3 return new Point(x &- a, y &- b)

4 }

5

6 var x = 2

7 var p = f(a &- x, b &- x)

8 x = 0

9 print(2 / p.x)

Listing 9. Example of concurrent mutation (SafeScript). The
program fails because the value to which p.x is bound was
mutated.

such situations. In fact, it should not be possible to capture
immutable borrows to a, because the function f cannot guar-
antee the immutability of the object it is associated with
beyond its own scope.

6 Type System
In this section, we formalize the typing semantics of Safe-
Script. It is flow sensitive, meaning that it does not only
depend on the statements but also on their ordering. Each
statement modifies a typing context, which maps references
and objects to permissions.

Definition 6.1 (Type Permission). The set of type permis-
sions is given by P = {ro, rw}, where ro is the read-only
permission, and rw is the read-write permission.

Apart from the built-in types, which are referred to with
Unit, we write f (x0 : q0, . . . ,xn : qn) : qr a particular
function type and C(x0 : q0, . . . ,xn : qn) a particular class
type. We use the term semantic type to refer to these types,
as they describe the intended use of an object’s value, as well
as the operations it may support, and write T for the set of
all semantic types.

Definition 6.2 (Typing Context). Let L denote the set of
memory locations. A typing context is a triple C = ⟨Γ,Ψ,Π⟩
where:

• Γ is a partial function X → T that maps variables to
types,

• Ψ is a partial function E → L that maps expressions
to memory locations,

• Π is a partial function E ∪L → P(P) that maps expres-
sions and memory locations to a set of permissions.

Note that the domain of the function Ψ includes all ex-
pressions (and sub-expressions), not only variable names.
The rationale is that all expressions actually represent some
value, which itself must live at somememory location. Hence,
we refer to both variable names and other expressions as
reference expressions.

Given a typing context C, we say say that the context type
type of the expression is the combination of its semantic
type with its associated permissions.

Let C = ⟨Γ,Ψ,Π⟩ be a typing context. The function R0
C
(l)

returns the set of reference expressions e ∈ E that refer
to the memory location l ∈ L. More formally, R0

C
(l) =

{e ∈ E | Ψ(e) = l}. When l holds a class instance (i.e.
e ∈ R0

C
(l) =⇒ Γ(e) = C(e1 : q1. . . . , en : qn)), we write

RC(l) the function that returns the set of reference expres-
sions that not only refer to the memory location l ∈ L, but
also to any location li ∈ L that is part of the representation of
the object at l . More formally, RC(l) = R0

C
(l)

⋃
ei RC(Ψ(e .ei )).

If l does not hold a class instance, then RC(l) = R0
C
(l). We

write Rro
C
(l) = {e | e ∈ RC(l) ∧ ro ∈ Π(e)} for the set of

immutable references on the object at l , and define the set of
mutable references Rrw

C
(l) similarly. Note that this definition

does distinguish between references and borrowed references
(i.e. additional aliases created with the &- operator). But we
can determine whether a reference is borrowed by checking
whether |RC(l)| > 1.

Example 6.3 (Reference expressions). Consider the follow-
ing program:

1 var pt: mut = new Point(x = 0, y = 1)

2 var r &- pt

3 var x &- pt.x

Let the typing context C represents the type state of this
program after its last statement. R0

C
(Ψ(pt)) contains the ref-

erences that directly refer to the object represented by pt,
that is the set {pt, r}. RC(Ψ(pt)) also contains x, because it
refers to some part of the object representation of the ob-
ject represented by pt. Therefore, RC(Ψ(pt)) = {pt, r, x}.
Rro
C
(Ψ(pt.x)) = {x} as it is the only immutable reference on

pt.x, but Rrw
C
(Ψ(pt.x)) = ∅ because there are no read-write

reference on pt.x.

As introduced in Section 4.4, SafeScript enforces data race
safety by disallowing concurrent read-only and read-write
borrows. The difficulty of satisfying such an invariant stems
from the fact that not only should mutable references lose
their writing privileges when borrowed immutably, but also
that such privileges should be restored once said immutable
borrows are dead [3]. One way to implement this mechanism
is by associating objects with permissions as well. Then, the
actual permissions of a reference are computed as the inter-
section of its own permissions with that of the object it is
bound to. As a result, if an object is stripped from its read-
write permission, the effective permissions of its references
will be updated accordingly. Conversely, if the read-write
permission is given back to an object, the effective permis-
sions of its references will be restored. Therefore, it suffices
to guarantee that as long as there exists at least one read-only
(resp. read-write) borrow on a reference, the object it refers
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to shall be stripped from its read-write (resp. read-only) per-
mission. More formally, we can define the aliasing safety
invariant as follows:

Definition 6.4 (Aliasing Safety Invariant). SafeScript en-
forces data race safety by guaranteeing that, for any typ-
ing context C = ⟨Γ,Ψ,Π⟩, a reference shall have either n
read-only borrows and 0 read-write borrows, or 0 read-only
borrows andm read-write borrows at any given time.

∀l ∈ L, |Rro
C
(l)| > 1 =⇒ rw < Π(l) (1)

∀l ∈ L, |Rrw
C
(l)| > 1 =⇒ ro < Π(l) (2)

Notice that the restriction on the permissions of l only
applies when there is more than a single read-only reference.
That is because we give the read-only and the read-write
permission to references that refer to a newly allocated mu-
table object (see Example 4.1). In fact, this underlines the
difference between a reference and a borrowed reference. Our
flow-sensitive judgment is of the form C ⊢ s ⇒ C′, where s
is a statement, C the typing context in which the statement
is consumed and C′ the typing context obtained after con-
suming the statement. A typing context is well-formed if it
satisfies the aliasing safety invariant.

Programs Programs are defined as a sequence of function
and class declarations, followed by a sequence of statements.
Hence, all we have to do is apply our flow-sensitive judgment
on each component of a program, sequentially:

x̄ = xh |xt C ⊢ xh ⇒ C′ C′ ⊢ xt ⇒ C′′

C ⊢ x̄ ⇒ C′′

(Statement-List)

Variable Declarations The following equations describe
the typing rules for variable declarations. Both feature the
premise x < dom(Π) to prevent duplicate declarations, and
both update the typing context with the contextual type of
the new variable. Note that no new memory allocation is
being performed, as this will be carried out by the assignment
rules.

x < dom(Π)

Γ,Ψ,Π ⊢ var x : cst ⇒ Γ,Ψ,Π[x 7→ {ro}]
(Immut-Decl)

x < dom(Π)

Γ,Ψ,Π ⊢ var x : mut ⇒ Γ,Ψ,Π[x 7→ {ro, rw}]
(Mut-Decl)

ParameterDeclarations Parameter declarationswork just
as variable declarations, except that mutable references do
not get a read-only permission. This makes sure an argu-
ment passed as a borrowed mutable reference may not be
borrowed immutable in the body of the function.

x < dom(Π)

Γ,Ψ,Π ⊢ x : cst ⇒ Γ,Ψ,Π[x 7→ {ro}]
(Immut-Par)

x < dom(Π)

Γ,Ψ,Π ⊢ x : mut ⇒ Γ,Ψ,Π[x 7→ {rw}]
(Mut-Par)

Expression Permissions The next set of rules presents the
permission typing judgement ⊢τ , which infers the effective
permissions of an expression. We write e ⊏ τ , ρ,C to denote
that e has the contextual type τ , ρ in the context C. We use a
total alternative Π+ to our partial permission mapping func-
tion Π, that returns the set of all permissions {ro, rw} when
Π is not defined. (Ref-Type) types references intersecting
their permissions with that of their associated memory loca-
tion to determine their effective permissions. (Select-Type)
types instance member selection similarly, except that it also
uses the effective permissions of references preceding the
dot operator to compute that of the reference. Incidentally,
this is how we freeze paths to immutable values.

x ∈ X Γ(x) = τ ρ = Π(x) ρ ′ = Π+(Ψ(x))

Γ,Ψ,Π ⊢τ x ⊏ τ , ρ ∩ ρ ′, ⟨Γ,Ψ,Π⟩
(Ref-Type)

C ⊢τ e ⊏ C(x1 : τ1, . . . ,xn : τn), ρe , ⟨Γ,Ψ,Π⟩
xi ∈ X ρ = Π(xi ) ρ ′ = Π+(Ψ(xi ))

C ⊢τ e .xi ⊏ τi , ρ ∩ ρ ′ ∩ ρe , ⟨Γ,Ψ,Π⟩
(Select-Type)

Function calls require a little more attention, as we should
pay a particular care as to how arguments and return types
interact with the typing context. From the point of view
of the call site, calling a function amounts to performing a
sequence of assignments to set the function arguments. In
more concrete terms, from the perspective of the call site,
the statement var r = f(arg1 = val1, arg2 &- val2)
can be reduced to the following program:

1 var arg1 = val1

2 var arg2 &- val2

3 var r = return_value_of_f

(Call-Type) captures this intuition. Assuming f refers to
a function f (x1 : q1, . . . ,xn : qn) : qr , we successively apply
our flow-sensitive judgement ⊢ on each argument assign-
ment. We then apply each argument assignment, eventually
producing Cn . Note that we are not interested about the
permissions ρ associated with the function itself to call it.
Instead, we use the qualifier of the return type to deter-
mine the permissions of the return value. Finally, we need
to express the restoration of the permissions removed by
borrowed arguments. To that end, we define a special ex-
pression null, which correspond to the absence of any ac-
tual value. Its contextual type is defined such that null ⊏
unit, {ro, rw},C for any typing contextC . We then reassign
all arguments to null, so as to compute the final context
produced by the function call. The semantics of those reas-
signment is given by the rules (Immut-Update-Borrow) and
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(Mut-Update-Borrow), which we will detail later.
C ⊢τ f ⊏ f (x1 : q1, . . . ,xn : qn) : qr , ρ,C0

∀i ∈ {1, . . . ,n},Ci−1 ⊢ xi ◁ ei ⇒ Ci
∀i ∈ {1, . . . ,n},Cn+i−1 ⊢ x = null ⇒ Cn+i

C ⊢τ f (x1 ◁ e1, . . . ,xn ◁ en) ⊏ τr , ρr ,Cn+n
(Call-Type)

Remember that we treat class constructors just as regular
functions (see Section 5). Therefore, class instantiations are
treated very similarly to function calls. However, since the
class instance persists after the call to the constructor, so
should the update on the permissions of the reference it bor-
rows. Hence, we do not keep the last premise of (Call-Type).

C ⊢τ f ⊏ f (x1 : q1, . . . ,xn : qn) : qr , ρ,C0
∀i ∈ {1, . . . ,n},Ci−1 ⊢ xi ◁ ei ⇒ Ci

C ⊢τ new f (x1 ◁ e1, . . . ,xn ◁ en) ⊏ τr , ρr ,Cn+n
(Class-Inst)

Return Statements Return statements simply compute
the final typing context of a function. As a result, typing
them boils down to computing the contextual type of the
return expression

C ⊢τ e ⊏ C ′

C ⊢ return e ⇒ C ′
(Return)

Copy Assignments We start by defining a function alloc :
(E → L) → L that, given an memory location mapping
function Ψ : E → L, returns a new location l such that
{e ∈ E | Ψ(e) = l} = ∅. Simply put, alloc allocates new
memory locations. We then formalize the semantics of copy
assignments. (Assign) applies when the left-hand side of the
operator has been declared, but has yet to be bound to an
memory location (x < dom(Ψ)). We use a total alternative
Ψ+ to our memory mapping function Ψ, that returns the
special location⊥ ∈ L when Ψ is not defined. We use alloc to
allocate a new memory location lx and bind it to x . Note that
the lx receives the same permissions as that of x . (Update)
applies when the left-hand side of the operator is already
bound (lx = Ψ(x)), and mutable (rw ∈ ρx ).

C ⊢τ e ⊏ τe , ρe ,Ce Ce ⊢τ x ⊏ τx , ρx , ⟨Γ,Ψ,Π⟩
x < dom(Ψ) le = Ψ+(e) lx = alloc(Ψ)

C ⊢ x = e ⇒ Γ[x 7→ τe ],Ψ[x 7→ lx ],Π[lx 7→ ρx ]
(Assign)

C ⊢τ e ⊏ τe , ρe ,Ce Ce ⊢τ x ⊏ τx , ρx , ⟨Γ,Ψ,Π⟩
lx = Ψ(x) le = Ψ+(e) rw ∈ ρx

C ⊢ x = e ⇒ Γ[x 7→ τe ],Ψ,Π
(Update)

Borrow Assignments Immutable borrows to unbounded
references are described by (Immut-Borrow). Remember that
we use the type of the left operand to determine whether a
borrow is mutable or immutable (see Section 4.4). Therefore,
we use the premise rw < ρx to assert the left-hand expres-
sion is immutable. We also check that x is currently unbound
with x < dom(Ψ). ro ∈ ρe and |Rrw

⟨Γ,Ψ,Π⟩
(le )| ≤ 1 maintains

the aliasing safety invariant (Definition 6.4) by prohibiting
immutable reborrows on mutable borrows. Finally, notice
how we make sure memory locations are stripped from their
read-write permission in the conclusion of the rule, which
is the mechanism that prevents further incompatible rebor-
rows.

C ⊢τ e ⊏ τe , ρe ,Ce Ce ⊢τ x ⊏ τx , ρx , ⟨Γ,Ψ,Π⟩
rw < ρx ro ∈ ρe x < dom(Ψ)
le = Ψ+(e) |Rrw

⟨Γ,Ψ,Π⟩
(le )| ≤ 1

C ⊢ x &- e ⇒ Γ[x 7→ τe ],Ψ[x 7→ le ],Π[x , le 7→ {ro}]
(Immut-Borrow)

(Mut-Borrow) is almost completely dual, with respect to per-
missions. A subtle difference is that we check for rw in the
permissions of x , rather than checking for the absence of ro.
The reason is that mutable references are declared with both,
as described in (Mut-Par).

C ⊢τ e ⊏ τ , ρe ,Ce Ce ⊢τ x ⊏ τ , ρx , ⟨Γ,Ψ,Π⟩
rw ∈ ρx rw ∈ ρe

le = Ψ+(e) |Rro
⟨Γ,Ψ,Π⟩

(le )| ≤ 1

C ⊢ x &- e ⇒ Γ[x 7→ τe ],Ψ[x 7→ le ],Π[x , le 7→ {rw}]
(Mut-Borrow)

Borrows to bound references are slightlymore complex. In-
deed, in an effort to maintain the aliasing safety invariant, we
updated the permissions on thememory location represented
by the right-hand expressions in both (Immut-Borrow) and
(Mut-Borrow). Therefore, we need to express the restoration
of the permissions removed by borrowed references, once
the latter are reassigned. To that end, we define a function
resC(l , e) that returns the permissions ρ ∈ P(P) of a loca-
tion l ∈ L, without the restriction imposed by a borrowed
reference expression e ∈ E. We obtain such permissions
by forming the intersection between that of all borrowed
references on l , except e:

res⟨Γ,Ψ,Π⟩(l , e) =
⋂

x ∈RC (l )−e

Π(x)

We then present the inference rules for borrows to bounded
references:

C ⊢τ e ⊏ τe , ρe ,Ce Ce ⊢τ x ⊏ τx , ρx , ⟨Γ,Ψ,Π⟩
rw < ρx ro ∈ ρe

lx = Ψ(x) le = Ψ+(e) |Rrw
⟨Γ,Ψ,Π⟩

(le )| ≤ 1
Π′ = Π[x , le 7→ {ro}][lx 7→ res⟨Γ,Ψ,Π⟩(lx ,x)]

C ⊢ x &- e ⇒ Γ[x 7→ τe ],Ψ[x 7→ le ],Π
′

(Immut-Update-Borrow)
C ⊢τ e ⊏ τe , ρe ,Ce Ce ⊢τ x ⊏ τx , ρx , ⟨Γ,Ψ,Π⟩

rw ∈ ρx rw ∈ ρe
lx = Ψ(x) le = Ψ+(e) |Rro

⟨Γ,Ψ,Π⟩
(le )| ≤ 1

Π′ = Π[x , le 7→ {rw}][lx 7→ res⟨Γ,Ψ,Π⟩(lx ,x)]

C ⊢ x &- e ⇒ Γ[x 7→ τe ],Ψ[x 7→ le ],Π
′

(Mut-Update-Borrow)
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1 var a: mut Π(a) = {ro, rw}

2 var b: cst Π(b) = {ro}

3 var r: cst Π(r ) = {ro}

4

5 a = 0 Ψ(a) = l1,Π(l1) = {ro, rw}

6 b = 0 Ψ(b) = l2,Π(l2) = {ro}

7

8 r &- a Ψ(r ) = l1,Π(l1) = {ro}

9 r &- b Ψ(r ) = l2,Π(l1) = {ro, rw}

10 a &- b Illegal

Listing 10. Example of assignment semantics (SafeScript).

Example 6.5 (Borrow Assignment Semantics). Consider
the program in Listing 10. Each line is annotated with the
changes in the contextual type. The assignment at line 8 cre-
ates a borrow on a. Here, (Immut-Borrow) applies, because
r is declared immutable at line 3, and is not yet bound to
a value. Furthermore, a temporary immutability constraint
is made on l1 (the memory to which a is bound). r is reas-
signed at line 9. This time (Immut-Update-Borrow) applies,
as x < dom(Ψ) does not hold, and the read-write permission
on l1 is restored. Line 10 is illegal because it attempts to
create a mutable borrow on an immutable reference. Indeed,
since a was declared mutable, (Immut-Update-Borrow) can-
not apply, and neither can (Mut-Update-Borrow), because
the premise rw ∈ ρe is not satisfied.

Note that the same principle applies when a reference
goes out of scope. In fact, the rules are nearly identical to the
above rules, with the notable exception that the reference is
not reassigned to another object.

6.1 Limitations
Our type system is unable to distinguish fresh return values
– in other terms objects created within a function – from ref-
erences a function would have got as parameter. The conse-
quence is that, from the call site, we cannot track temporary
immutability constraints placed in the body of a function.
An example is given in Listing 11.

One workaround is to consider all return values as deep
copies. This way, no immutability constraint can persist on
the arguments of the function. A more elaborate solution
would be to enrich the type of a function so that the call site
may be aware of the permission update the arguments will
undergo.

6.2 Soundness Result
Our soundness result is based the standard syntactic ap-
proach of preservation and progress [44]. In brief, our goal
is to show that our type system either is able to compute the
final typing context of a program, in which case the program
is well-typed, or the computation terminates with an invalid
state. Such invalid state is characterized by either a typing

1 func f(a: mut): cst {

2 return a

3 }

4 var x: mut = 0

5 var y: cst = f(a &- x)

6 x = 2 // Illegal if y borrows x

Listing 11.A concealed immutability constraint (SafeScript).

context that is not well-formed, or a statement list that our
type system is unable to reduce. We formulate both theorems
as follows:

Theorem 6.6 (Preservation). Let C be a well-formed typing
context, if C ⊢ s ⇒ C′, then C′ is well-formed.

Theorem 6.7 (Progress). Let P = c + f +s . For any i < |s |, if
C ⊢ si ⇒ C′ then there exists C′′ such that C′ ⊢ si+1 ⇒ C′′,
or there is no matching rule and the reduction is stuck.

Theorem 6.6 guarantees that reduction preserves well-
formedness of typing contexts, while theorem 6.7 ensures the
reduction either progresses towards a final typing context,
or is stuck and can never type check P . Soundness of the
type system follows from these two theorems. The proof
consists of ensuring that no reduction rule can jeopardize
the well-formedness of a typing contexts, which is done by
case analysis on each reduction rule. We do not include its
details for spacial reasons.
Note that this is not a strong soundness result, as one

would also involve SafeScript’s operational semantics. We
do not include the detailed proof for spacial reasons, but
sketch it as follows. Only (Copy) and (Bind-m)may introduce
concurrent mutation, as they are the only rules modifying
V for a location l that may already be bound to multiple
references. For the sake of the proof, the evaluation context E,
as well as the (Bind) rule must be modified, so that we may
distinguish between read-write and read-only references
during the evaluation of a particular expression. Finally, one
has to show that an immutable reference may never appear
on the left side of a copy assignment in awell-typed program.

7 Conclusion
We propose a type system that guarantees aliasing safety,
so as to prevent data race, based on type permissions and
borrowing. Since our work is set in the context of cooper-
ative single-threaded programs, our type system does not
restrict the number of mutable borrowed references, as it is
common in most other approaches. This allows us to support
multiple writers, an essential feature to represent mutable
self-referential data structures, without resorting to elabo-
rate workarounds or bypassing the language’s type checking
mechanisms.
We present our type system in the context of SafeScript,

a reference-based language that only requires the addition
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of minimal annotations on variable, type and function dec-
larations. An implementation of a compiler for SafeScript,
as well as various example programs showcasing our type
system, are available here https://github.com/kyouko-taiga/
SafeScript.

The methodology of our type system is agnostic to a spe-
cific programming language and can easily be extended with
additional features. It has been implemented in Anzen3, an-
other programming language that focuses on memory safety,
where it is extended by an ownership system to handle mem-
ory deallocation.

References
[1] Jean-Baptiste Arnaud, Marcus Denker, Stéphane Ducasse, Damien Pol-

let, Alexandre Bergel, and Mathieu Suen. 2010. Read-only Execution
for Dynamic Languages. In Proceedings of the 48th International Con-
ference on Objects, Models, Components, Patterns (TOOLS’10). Springer-
Verlag, Berlin, Heidelberg, 117–136. http://dl.acm.org/citation.cfm?
id=1894386.1894393

[2] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. 2014. Under-
standing TypeScript. In ECOOP 2014 - Object-Oriented Programming -
28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings. 257–281. https://doi.org/10.1007/978-3-662-44202-9_11

[3] John Boyland. 2001. Alias burying: Unique variables without destruc-
tive reads. Software - Practice and Experience 31, 6 (2001), 533–553.
https://doi.org/10.1002/spe.370

[4] John Boyland, James Noble, and William Retert. 2001. Capabili-
ties for Sharing: A Generalisation of Uniqueness and Read-Only. In
ECOOP 2001 - Object-Oriented Programming, 15th European Confer-
ence, Budapest, Hungary, June 18-22, 2001, Proceedings. 2–27. https:
//doi.org/10.1007/3-540-45337-7_2

[5] John Tang Boyland and William Retert. 2005. Connecting Effects and
Uniqueness with Adoption. In Proceedings of the 32Nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’05).
ACM, New York, NY, USA, 283–295. https://doi.org/10.1145/1040305.
1040329

[6] Jacob Burnim, Tayfun Elmas, George C. Necula, and Koushik Sen. 2012.
CONCURRIT: Testing Concurrent Programs with Programmable State-
Space Exploration. In 4th USENIXWorkshop on Hot Topics in Parallelism,
HotPar’12, Berkeley, CA, USA, June 7-8, 2012.

[7] Nick Cameron. 2018. Graphs and arena allocation. https://github.
com/nrc/r4cppp/blob/master/graphs/README.md. (2018). Accessed:
2018-04-09.

[8] Nicholas Robert Cameron, Sophia Drossopoulou, James Noble, and
Matthew J. Smith. 2007. Multiple ownership. In Proceedings of the
22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2007, October
21-25, 2007, Montreal, Quebec, Canada. 441–460. https://doi.org/10.
1145/1297027.1297060

[9] Dave Clarke and Tobias Wrigstad. 2003. External uniqueness is unique
enough. ECOOP 2003–Object-Oriented Programming (2003), 59–67.

[10] David G. Clarke, John M. Potter, and James Noble. 1998. Ownership
Types for Flexible Alias Protection. In Proceedings of the 13th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’98). ACM, New York, NY, USA,
48–64. https://doi.org/10.1145/286936.286947

[11] Erik Crank and Matthias Felleisen. 1991. Parameter-passing and the
Lambda Calculus. In Proceedings of the 18th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’91). ACM,
New York, NY, USA, 233–244. https://doi.org/10.1145/99583.99616

3http://anzen-lang.org

[12] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented
software. Pearson Education India.

[13] Prodromos Gerakios, Nikolaos Papaspyrou, and Konstantinos Sagonas.
2014. Static safety guarantees for a low-level multithreaded language
with regions. Science of Computer Programming 80 (2014), 223–263.

[14] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield,
and Joe Duffy. 2012. Uniqueness and Reference Immutability for Safe
Parallelism. SIGPLAN Not. 47, 10 (oct 2012), 21–40. https://doi.org/10.
1145/2398857.2384619

[15] Donald Gordon and James Noble. 2007. Dynamic Ownership in a
Dynamic Language. In Proceedings of the 2007 Symposium on Dynamic
Languages (DLS ’07). ACM, New York, NY, USA, 41–52. https://doi.
org/10.1145/1297081.1297090

[16] Rachid Guerraoui and Paolo Romano (Eds.). 2015. Transactional
Memory. Foundations, Algorithms, Tools, and Applications - COST Ac-
tion Euro-TM IC1001. Lecture Notes in Computer Science, Vol. 8913.
Springer. https://doi.org/10.1007/978-3-319-14720-8

[17] Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert. 2007.
Immutable Objects for a Java-Like Language. In Programming Lan-
guages and Systems, 16th European Symposium on Programming, ESOP
2007, Held as Part of the Joint European Conferences on Theory and Prac-
tics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings. 347–362. https://doi.org/10.1007/978-3-540-71316-6_24

[18] Philipp Haller and Martin Odersky. 2010. Capabilities for unique-
ness and borrowing. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6183 LNCS (2010), 354–378. https://doi.org/10.1007/
978-3-642-14107-2_17

[19] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. 1984.
Continuations and Coroutines. In Proceedings of the 1984 ACM Sympo-
sium on LISP and Functional Programming (LFP ’84). ACM, New York,
NY, USA, 293–298. https://doi.org/10.1145/800055.802046

[20] Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. 2004.
Experience with Safe Manual Memory-management in Cyclone. In
Proceedings of the 4th International Symposium onMemoryManagement
(ISMM ’04). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/
1029873.1029883

[21] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-
erweight Java: A Minimal Core Calculus for Java and GJ. ACM Trans.
Program. Lang. Syst. 23, 3 (may 2001), 396–450. https://doi.org/10.1145/
503502.503505

[22] M. E. Joorabchi, A. Mesbah, and P. Kruchten. 2013. Real Challenges in
Mobile App Development. In 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement. 15–24. https:
//doi.org/10.1109/ESEM.2013.9

[23] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2018. RustBelt: Securing the foundations of the Rust programming
language. Proc. ACM Program. Lang. 2, POPL, Article (2018).

[24] Gabriel Kerneis and Juliusz Chroboczek. 2011. CPC: programming
with a massive number of lightweight threads. CoRR abs/1102.0951
(2011). arXiv:1102.0951 http://arxiv.org/abs/1102.0951

[25] Jack A. Laird. 2006. A calculus of coroutines. Theor. Comput. Sci. 350,
2-3 (2006), 275–291. https://doi.org/10.1016/j.tcs.2005.10.027

[26] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg. 2008.
Flexible immutability with frozen objects. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 5295 LNCS (2008), 192–208.
https://doi.org/10.1007/978-3-540-87873-5-17

[27] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.
Ada Lett. 34, 3 (oct 2014), 103–104. https://doi.org/10.1145/2692956.
2663188

[28] Ana Lúcia De Moura and Roberto Ierusalimschy. 2009. Revisiting
Coroutines. ACM Trans. Program. Lang. Syst. 31, 2, Article 6 (feb 2009),
31 pages. https://doi.org/10.1145/1462166.1462167

https://github.com/kyouko-taiga/SafeScript
https://github.com/kyouko-taiga/SafeScript
http://dl.acm.org/citation.cfm?id=1894386.1894393
http://dl.acm.org/citation.cfm?id=1894386.1894393
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1002/spe.370
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1145/1040305.1040329
https://doi.org/10.1145/1040305.1040329
https://github.com/nrc/r4cppp/blob/master/graphs/README.md
https://github.com/nrc/r4cppp/blob/master/graphs/README.md
https://doi.org/10.1145/1297027.1297060
https://doi.org/10.1145/1297027.1297060
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/99583.99616
http://anzen-lang.org
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1145/2398857.2384619
https://doi.org/10.1145/1297081.1297090
https://doi.org/10.1145/1297081.1297090
https://doi.org/10.1007/978-3-319-14720-8
https://doi.org/10.1007/978-3-540-71316-6_24
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1007/978-3-642-14107-2_17
https://doi.org/10.1145/800055.802046
https://doi.org/10.1145/1029873.1029883
https://doi.org/10.1145/1029873.1029883
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1109/ESEM.2013.9
https://doi.org/10.1109/ESEM.2013.9
http://arxiv.org/abs/1102.0951
http://arxiv.org/abs/1102.0951
https://doi.org/10.1016/j.tcs.2005.10.027
https://doi.org/10.1007/978-3-540-87873-5-17
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/1462166.1462167


SLE2018, November 5–6, 2018, Boston, USA Dimitri Racordon and Didier Buchs

[29] Alan Mycroft and Janina Voigt. 2013. Notions of aliasing and own-
ership. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7850
(2013), 59–83. https://doi.org/10.1007/978-3-642-36946-9-4

[30] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff.
2012. A Type System for Borrowing Permissions. SIGPLAN Not. 47, 1
(Jan. 2012), 557–570. https://doi.org/10.1145/2103621.2103722

[31] Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom.
2008. Ownership, Uniqueness, and Immutability. In Objects, Com-
ponents, Models and Patterns, 46th International Conference, TOOLS
EUROPE 2008, Zurich, Switzerland, June 30 - July 4, 2008. Proceedings.
178–197. https://doi.org/10.1007/978-3-540-69824-1_11

[32] Alex Potanin, Johan Ostlund, Yoav Zibin, and Michael D Ernst. 2013.
Immutability. In Aliasing in Object-Oriented Programming. Types, Anal-
ysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad
(Eds.). Springer Berlin Heidelberg, 233–269. https://doi.org/10.1007/
978-3-642-36946-9_9

[33] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In 17th IEEE Symposium on Logic in Computer Science
(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. 55–74.
https://doi.org/10.1109/LICS.2002.1029817

[34] Kristian Rother. 2017. Static Typing in Python. Apress, Berkeley, CA,
231–244. https://doi.org/10.1007/978-1-4842-2241-6_16

[35] Rami Sarieddine. 2014. JavaScript Promises Essentials. Packt Publishing
Ltd.

[36] Ilya Sergey and Dave Clarke. 2012. Gradual Ownership Types. In
Proceedings of the 21st European Conference on Programming Languages
and Systems (ESOP’12). Springer-Verlag, Berlin, Heidelberg, 579–599.
https://doi.org/10.1007/978-3-642-28869-2_29

[37] Kishori Sharan. 2018. Collections. In Java Language Features. Springer,
587–674.

[38] K. Simpson. 2015. You Don’t Know JS: ES6 & Beyond. O’Reilly Media.
https://books.google.ch/books?id=rec6CwAAQBAJ

[39] Martin Steffen. 2016. A Small-Step Semantics of a Concurrent Cal-
culus with Goroutines and Deferred Functions. In Essays Dedicated
to Frank De Boer on Theory and Practice of Formal Methods - Volume
9660. Springer-Verlag New York, Inc., New York, NY, USA, 393–406.
https://doi.org/10.1007/978-3-319-30734-3_26

[40] Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman, and
Trevor Jim. 2006. Safe manual memory management in Cyclone. Sci.
Comput. Program. 62, 2 (2006), 122–144. https://doi.org/10.1016/j.scico.
2006.02.003

[41] Akihiko Tozawa, Michiaki Tatsubori, Tamiya Onodera, and Yasuhiko
Minamide. 2009. Copy-on-write in the PHP Language. In Proceedings
of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’09). ACM, New York, NY, USA,
200–212. https://doi.org/10.1145/1480881.1480908

[42] Matthew S. Tschantz and Michael D. Ernst. 2005. Javari: Adding
Reference Immutability to Java. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05). ACM, New York, NY, USA,
211–230. https://doi.org/10.1145/1094811.1094828

[43] Paul R. Wilson. 1992. Uniprocessor Garbage Collection Techniques.
In Memory Management, International Workshop IWMM 92, St. Malo,
France, September 17-19, 1992, Proceedings. 1–42. https://doi.org/10.
1007/BFb0017182

[44] Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach
to type soundness. Information and Computation 115, 1 (1994), 38–94.
https://doi.org/10.1006/inco.1994.1093

[45] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kie, un, and
Michael D. Ernst. 2007. Object and Reference Immutability Using Java
Generics. In Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (ESEC-FSE ’07). ACM, New

York, NY, USA, 75–84. https://doi.org/10.1145/1287624.1287637

https://doi.org/10.1007/978-3-642-36946-9-4
https://doi.org/10.1145/2103621.2103722
https://doi.org/10.1007/978-3-540-69824-1_11
https://doi.org/10.1007/978-3-642-36946-9_9
https://doi.org/10.1007/978-3-642-36946-9_9
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-1-4842-2241-6_16
https://doi.org/10.1007/978-3-642-28869-2_29
https://books.google.ch/books?id=rec6CwAAQBAJ
https://doi.org/10.1007/978-3-319-30734-3_26
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1145/1480881.1480908
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1007/BFb0017182
https://doi.org/10.1007/BFb0017182
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/1287624.1287637

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cooperative Multitasking
	2.2 Immutability Semantics

	3 Related Work
	4 SafeScript
	4.1 Types
	4.2 Non-Reassignability and Object Immutability
	4.3 Binding Semantics
	4.4 Permission Borrowing

	5 Operational Semantics
	5.1 Notation
	5.2 Syntax
	5.3 Semantics
	5.4 Illustrating Concurrent Mutation

	6 Type System
	6.1 Limitations
	6.2 Soundness Result

	7 Conclusion
	References

