
Featherweight Swift: A Core Calculus for Swift’s Type
System

Dimitri Racordon

University of Geneva

Department of Computer Science

Switzerland

dimitri.racordon@unige.ch

Didier Buchs

University of Geneva

Department of Computer Science

Switzerland

didier.buchs@unige.ch

Abstract
Swift is a modern general-purpose programming language,

designed to be a replacement for C-based languages. Al-

though primarily directed at development of applications

for Apple’s operating systems, Swift’s adoption has been

growing steadily in other domains, ranging from server-side

services to machine learning. This success can be partly at-

tributed to a rich type system that enables the design of safe,

fast, and expressive programming interfaces. Unfortunately,

this richness comes at the cost of complexity, setting a high

entry barrier to exploit Swift’s full potential. Furthermore,

existing documentation typically only relies on examples,

leaving new users with little help to build a deeper under-

standing of the underlying rules and mechanisms.

This paper aims to tackle this issue by laying out the foun-

dations for a formal framework to reason about Swift’s type

system. We introduce Featherweight Swift, a minimal lan-

guage stripped of all features not essential to describe its

typing rules. Featherweight Swift features classes and proto-

col inheritance, supports retroactive modeling, and emulates

Swift’s overriding mechanisms. Yet its formalization fits on

a few pages. We present Featherweight Swift’s syntax and

semantics. We then elaborate on the usability of our frame-

work to reason about Swift’s features, future extensions,

and implementation by discussing a bug in Swift’s compiler,

discovered throughout the design of our calculus.

CCSConcepts: • Software and its engineering→ Seman-
tics; • Theory of computation → Operational semantics.

Keywords: protocol oriented programming, language se-

mantics, language calculus, type systems, swift

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’20, November 16–17, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8176-5/20/11. . . $15.00

https://doi.org/10.1145/3426425.3426939

ACM Reference Format:
Dimitri Racordon and Didier Buchs. 2020. Featherweight Swift: A

Core Calculus for Swift’s Type System. In Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language En-
gineering (SLE ’20), November 16–17, 2020, Virtual, USA. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3426425.3426939

1 Introduction
Swift is a modern general-purpose programming language,

developed by Apple to be a successor to C-based languages.

Often introduced in the context of mobile and desktop appli-

cations, Swift’s adoption in other domains has been growing

steadily since its open-source release in 2014, notably in the

context of server-side and machine learning development.

This success can be explained on one front by the language’s

efficient memory model and seamless integration into the

C ecosystem, and on another by its powerful type system.

Swift enables the design of safe, fast and expressive pro-

gramming interfaces by leveraging advanced features such

as bounded polymorphism [11], existential types [31], and

traits [19]. The latter in particular enables a discipline called

Protocol-Oriented Programming (POP). POP is a type-driven

paradigm that advocates for the use of protocols over con-
crete types. Protocols in Swift are similar to interfaces in

Java, abstract classes and concepts in C++, or traits in Scala.

The central idea is to reason about type requirements (i.e.,
what types should be able to do) rather than properties of

a specific implementation. Sorting algorithms are a good

canonical use case for such an approach. Although they are

often defined over numerical values, most sorting algorithms

are in fact agnostic of the type of the values being sorted,

as long as it defines a total order relation. Following that

observation, a protocol-oriented approach consists of first

capturing this requirement in a protocol, and then writing

an algorithm that would rely on some existential type satis-

fying this protocol, while remaining otherwise completely

agnostic of any other implementation detail.

Unfortunately, Swift’s type system comes at the cost of

complexity.While object-orientation is generally well known

and understood by most developers, knowledge on POP pat-

terns and related concepts is not nearly as widespread. As

a result, exploiting the language’s full potential requires a

high-level of expertise and experience. Furthermore, existing

https://doi.org/10.1145/3426425.3426939
https://doi.org/10.1145/3426425.3426939

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

documentation focuses on examples and does not provide

a comprehensive overview of the type system’s rules and

mechanisms. This impedes new users, specifically students,

to build a deeper understanding. The lack of a formal defini-

tion of the language’s semantics also precludes one’s ability

to reason about its design and implementation, in particular

to foresee interactions between different features.

We propose to address these issues by the means of a for-

mal framework describing Swift’s type system. We introduce

Featherweight Swift (FS), a core calculus inspired by Feather-

weight Java (FJ) [23]. FS captures the fundamental concepts

of Swift’s type system and discards all features that are not

essential to the description of its typing rules. It features class

and protocol inheritance, supports retroactive modeling, and

emulates Swift’s overriding mechanism, but leaves out local

and global variables, exceptions, concurrency, and even as-

signment. This results in a functional subset whose complete

formalization fits on a few pages. While our approach elides

many peculiarities, such as the difference between value and

reference semantics [35], the bareness of the language ex-

poses Swift’s method lookup mechanism and type coercion

rules clearly and concisely. As a result, FS helps language

users and designers alike to generalize assumptions and test

them against the compiler’s implementation.

We present Featherweight Swift’s syntax, type system, and

operational semantics. Although we do not provide a full

type soundness proof, we present the key properties related

to the method lookup mechanism. We then illustrate the

framework’s usability to reason about Swift by discussing

one of the bugs we found in Apple’s compiler implementa-

tion, discovered throughout FS’s formalization. The bug has

been reported and fixed in Swift 5.2.

2 Swift’s Type System in a Nutshell
This section briefly introduces Swift’s type system, with a

particular focus on its support for protocols. It is worth not-

ing that POP solves similar problems as Object-Oriented

Programming (OOP) [2]. However, it aims to avoid common

pitfalls of class inheritance, such as the fragile base class

problem [38], by advocating for composition over inheri-

tance to keep class hierarchies as flat as possible. It also

differs from mixin-based inheritance [9], a technique that

consists of composing classes through multiple inheritance,

specifically because it does not rely on inheritance as a com-

position mechanism. Nonetheless, POP does not intend to

replace object-orientation. Rather, it introduces features that

can be used to refine essential object-oriented aspects, such

as encapsulation, polymorphism, and separation of concerns.

In Swift, a protocol represents a collection of requirements

to satisfy. These requirements are specified in the form of

methods to implement or properties (a.k.a. fields in Java)

to expose. For instance, one could define a protocol that

expresses the requirements of serializable types:

1 protocol Serializable {

2 func serialize() -> String

3 }

The above protocol describes a type with a single method

serialize. The method takes no argument and is expected

to return a serialized representation of its receiver (i.e., the

object on which it is called), as a character string.

There are two ways to indicate that a type conforms to

a particular protocol. The first and most straightforward is

to specify the conformance directly within the type’s dec-

laration and to provide an implementation for all of the

protocol’s requirements:

1 class Customer: Serializable {

2 let id: String

3 let name: String

4 init(id: String, name: String) {

5 self.id = id; self.name = name

6 }

7 func serialize() -> String {

8 "(id:\(self.id), name:\(self.name))"

9 }

10 }

Here, the class Customer is declared conforming to the pro-

tocol Serializable. The conformance is valid because the

class has a method that satisfies the protocol’s requirement.

An alternative approach, called retroactive modeling [41],

consists of extending an existing concrete type to specify

additional conformances and provide it with the associated

implementations. For example, one can specify that Swift’s

integers conform to the Serializable protocol:

1 extension Int: Serializable {

2 func serialize() -> String { "i(\(self))" }

3 }

To preserve subtyping, retroactive modeling can only add
constructs to a type and may not modify nor remove any

of its pre-existing characteristics. Simply put, an extension

cannot alter any method or property from a type, nor can it

subtract any protocol from its conformance set.

A protocol can refine (i.e., inherit from) one or several

other protocols to represent an aggregate of requirements.

For instance, we can compose a protocol Doc, describing the

requirements for types representing a document of some

sort, with Serializable to represent persistent documents:

1 protocol Doc {

2 func title() -> String

3 }

4 protocol PersistentDoc: Serializable, Doc {

5 func save(filename: String)

6 }

Protocols may also appear in signatures to express the con-

straints of some concrete existential type [31] satisfying their

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

requirements. Anonymous compositions can be created lo-

cally when composition through inheritance does not result

in a reusable abstraction:

1 let doc: Serializable & Doc

Unlike Java interfaces, protocols may refer to the concrete

type that conforms to them. For instance, consider a protocol

Orderable describing types with a total order:

1 protocol Orderable {

2 func lesser(other: Self) -> Bool

3 }

This protocol requires a single method lesser, that should

return whether another instance is smaller than the receiver
1
.

Notice the use of the type Self (a.k.a. MyType in related liter-

ature [10]), that serves as a placeholder for the conforming

type. This allows a protocol to specify methods that are not

compatible with other types conforming to the same proto-

col, which contributes to a stronger type safety. Indeed, the

use of Self guarantees that two values of non-related types

(e.g., a number and a string) cannot be compared, even if both

types conform to the protocol Orderable. In other words, if

a type T conforms to the protocol Orderable, then it should

contain a method lesser with the type T → Bool. Conse-

quently, the method will not accept a value of type U, even

if U also conforms to Orderable. This solves a common pit-

fall referred to as the binary method problem [10]. However,

protocols with self requirements (i.e., defining a method or

property requirement annotated with Self) cannot be used

to type an expression in a protocol composition. The reason

for this limitation is linked to the type safety guarantee we

have just discussed. Should it be possible to type a variable x

with the protocol Orderable, then there would be no way to

type-check a call to the method x.lesser statically. There

are workarounds, like explicit parameterisation (e.g., Haskell

type classes and C++ concepts), multiple dispatch [13] or

type erasure [14], but an extensive discussion about such

techniques is beyond the scope of this paper.

Swift supports protocol extensions as well. While such

extensions cannot add additional conformances to a protocol,

they can be used to provide additional methods and/or de-

fault implementations for a protocol’s method and property

requirements. The reader will remark that this feature is akin

to the concept of partially implemented traits in languages

such as Scala or Rust. For example, one can define a protocol

for equatable types which, similarly to Orderable, defines

method requirements to check for equality between two in-

stances
2
. Based on this description, a default implementation

of a method notEquals is obvious, and can be provided in a

protocol extension.

1
Note that the requirement is purely syntactical and does not prescribe

anything about the method’s semantics.

2
The reader proficient in Swift will notice that this definition of

Equatable differs from Swift’s built-in protocol. This choice is delib-

erate and made to brush over the notion of static function requirements.

1 protocol Equatable {

2 func equals(other: Self) -> Bool

3 }

4 extension Equatable {

5 func notEquals(other: Self) -> Bool {

6 !self.equals(other: other)

7 }

8 }

Conforming types may still override default implementa-

tions, typically to provide optimized alternatives that can

rely on the properties of the conforming type. Otherwise,

they will inherit all default implementations. One problem re-

lated to this feature occurs when two distinct protocols have

implementations for the same method requirement. This in-

troduces an ambiguity for conforming types, which must

specify which implementation should be inherited. There

exists a handful of techniques to handle these cases [33].

However, in Swift, conflicts can only be resolved by overrid-

ing the default implementation in the conforming type, as

of this writing. Consider the following example:

1 protocol Dumpable {

2 func dump()

3 }

4 extension Dumpable {

5 func dump() { print("Some Dumpable val.") }

6 }

7

8 protocol Doc {

9 func title() -> String

10 }

11 extension Doc {

12 func dump() { print(self.title()) }

13 }

14

15 class DummyDoc: Dumpable, Doc {

16 func title() -> String { "A document" }

17 func dump() { print("Some DummyDoc val.") }

18 }

19

20 DummyDoc().dump()

21 // Prints "Some DummyDoc val."

The class DummyDoc conforms to Dumpable and Doc, and ob-

tains two default implementations for dump, defined at line

5 and 12 respectively. Hence, it must solve the conflict by

overriding the method, which is done at line 17.

Notice that protocol extensions can provide implemen-

tations even when they are not defined as requirements.

This is the case in the above example. The method dump

is provided by an extension at line 12 even if the protocol

Doc does not require it. This results in a subtle difference in

the lookup mechanism, reminiscent of non-virtual methods

in C++ [4], that allows the compiler to dispatch methods

statically. Hence, if the dump is called on an existential type

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

satisfying Doc only, the implementation declared at line 12

will be called even if it is reimplemented in the concrete type.

This behavior is specific to protocol extensions and cannot

be reproduced with concrete types. It is not formalized in FS.

3 Featherweight Swift
Featherweight Swift is a strict functional subset of Swift,

which focuses on the latter’s essential features to describe

its type system. A program is described by a set of classes,

protocols and extensions, and a single expression. The latter

represents the behavior of the entire program.

1 protocol Thing {

2 func duplicated() -> Pair

3 }

4

5 extension Thing {

6 func duplicated() -> Pair {

7 Pair(fst: self, snd: self)

8 }

9 }

10

11 class A: Object, Thing {}

12

13 class B: Object, Thing {

14 let foo: A

15 }

16

17 class C: B {

18 let bar: A

19 }

20

21 class Pair: Object {

22 let fst: protocol<Thing>

23 let snd: protocol<Thing>

24 func withFst(v: protocol<Thing>) -> Pair {

25 Pair(fst: v, snd: self.snd)

26 }

27 }

28

29 Pair(fst: A(), snd: B(foo: A()))

30 .snd

31 .duplicated()

32 .withFst(C(foo: A(), bar: A()))

33 // Evaluates to "Pair(

34 // fst: C(foo: A(), bar: A()),

35 // snd: B(foo: A()))"

Figure 1. A typical Featherweight Swift program

From Swift, FS keeps protocols, extensions and classes,

and its type system supports protocol conformance, protocol

composition, and class inheritance. However, among Swift’s

most common features, FS drops non-member functions and

properties (i.e., functions and variables declared outside of

a class), computed properties, exceptions, concurrency, and

side effects. All properties are considered to be let (a.k.a.

constant) bindings, assigned only once in their class’ ini-

tializer, and method arguments cannot be reassigned. We

also elide the difference between value and reference types,

whose respective observable behaviors are indistinguishable

in the absence of side effects. Despite all these omissions,

FS remains expressive enough to be Turing complete (one

can encode the _-calculus in FS). Note that FS does not fea-

ture generic types. While these account for a significant part

of Swift’s type system, we prefer to focus solely on class

inheritance and protocol conformance.

Figure 1 illustrates an example of a FS program. It starts

with the declaration of a protocol Thing, which contains a

single requirement for a method duplicated. It is extended

at line 5 to provide a default implementation for its unique

requirement, which consists of initializing a new instance of

the class Pair using the method receiver for both elements.

The program declares four classes, A, B, C and Pair at lines

11, 13, 17 and 21 respectively. A and B inherit from a built-in

root class Object and conform to the protocol Thing, but

B additionally declares a property foo, which is inherited

by the class C. Pair declares two properties fst and snd,

along with a method withFst that returns a copy of itself

in which the first element is substituted with the method’s

argument. The use of these types is finally illustrated by the

expression at line 29, which initializes a pair, duplicates its

second element to produce another pair, and substitutes its

first element with an instance of the class C.

3.1 Formal Syntax
Let𝐶 denote a syntactic category, we write𝐶#

for a possibly

empty set of syntactic constructions that are generated by𝐶 .

Similarly, let 𝑆 be a set, we write 𝑆# ⊆ P(𝑆).

Definition 3.1 (Featherweight Swift’s syntax). Let 𝐼𝑝 de-

note the set of protocol identifiers, 𝐼𝑐 denote the set of class

identifiers and 𝐼𝑥 denote the set of variable, property, and

method identifiers. Let the metasyntactic variable 𝑝 range

over 𝐼𝑝 . Let 𝑐 and 𝑑 range over 𝐼𝑐 , and 𝑥 range over 𝐼𝑥 . FS’s

syntax is described as follows:

Prog. Π F Pd# Cd# Xd# 𝑒
Prot. Pd F protocol 𝑝 : 𝐼 #𝑝 { Rd# }
Class Cd F class 𝑐 : 𝑑, 𝐼 #𝑝 { Vd# Md# }
Ext. Xd F extension 𝑝 {Md# }

| extension 𝑐 : 𝐼 #𝑝 {Md# }
Prop. Vd F let 𝑥 : 𝜏

Meth. Md F func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏 { 𝑒 }

Req. Rd F func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏

Expr. 𝑒 F 𝑥 | 𝑒.𝑥 | 𝑒 as 𝜏 | 𝑒 as! 𝜏
| 𝑒 (𝑒1, . . . , 𝑒𝑛) | 𝑐 (𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛)

Type 𝜏 F 𝑐 | protocol⟨𝐼 #𝑝⟩ | 𝜏 → 𝜏 | Self

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

FS’s syntax is defined to be as close as possible to that of

Swift. In fact, FS programs can almost be copy-pasted into

a Swift compiler and have the same semantics. We assume

that a program does not contain duplicate type declarations.

Similarly, we assume that classes do not contain duplicate

property or method declarations and that methods do not

feature duplicate parameters.

A protocol declaration protocol 𝑝 : 𝑃 { 𝑅 } declares a

protocol 𝑝 that refines each of the protocols in 𝑃 . The decla-

ration’s body is a set of method requirements (i.e., methods

that conforming types should implement), which are de-

clared the just as regular methods, except that they do not

have a body. For simplicity, we omit property requirements.

These would require the addition of computed properties

(i.e., properties whose values are the result of a method call),

whose typing mechanism overlaps with regular methods.

A class declaration class 𝑐 : 𝑑, 𝑃 { 𝑉 𝑀 } introduces a

class named 𝑐 that inherits from a base class 𝑑 , and conforms

to each of the protocols in 𝑃 . All class declarations define a

supertype, for the sake of syntactic regularity. Consequently,

classes that in standard Swift do not inherit from any base

class are declared inheriting from a root class Object in FS
3
.

The body of a class declaration consists of a set of property

declarations and a set of method declarations. Since the lan-

guage is free of side effects, all properties can be treated

as let (a.k.a. constant) bindings. In other words, all prop-

erty declarations are of the form let 𝑥 : 𝜏 , where 𝑥 is the

name of the property being declared and 𝜏 is its type, and

we omit default values. FS does not support overloading,

including for initializers. Thus, all classes necessarily have a

single memberwise initializer (i.e., an initializer that accepts

an argument for each of the class’ properties), which we

keep implicit for conciseness. Unlike in Swift, nested classes

(a.k.a. inner classes in Java) are prohibited. While such a fea-

ture can serve to declutter the global namespace, it does not

contribute to expressiveness. Furthermore, we also omit cus-

tom deinitializer (a.k.a. destructors), as those cannot affect a

program’s behavior in the absence of side effects.

An extension declaration of the form extension 𝑝 {𝑀 }

is called a protocol extension. It provides a protocol 𝑝 with

method implementations for its conforming types. Similarily,

an extension of the form extension 𝑐 : 𝑃 { 𝑀 } is called

a class extension. It can provide a class 𝑐 with additional

protocol conformances and method implementations.

A method declaration func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏 { 𝑒 }

declares a method 𝑥 that accepts 𝑛 parameters and always

returns a value, computed by evaluating the expression 𝑒 cor-

responding to the method’s body. A method’s body can refer

to a special variable self ∈ 𝐼𝑥 that identifies the method’s

receiver and allows recursion. It is treated as a regular vari-

able rather than a keyword, so that no additional typing or

evaluation rule is required to describe property accesses. We

3
Such a root class does not exist in actual Swift, but can be easily reproduced.

omit static and class methods, as well as non-member func-

tions (i.e., functions declared outside of a class). Methods are

first-class citizen in FS. Therefore, they must be treated as

standard expressions (e.g., as arguments or return values),

and an application of the form 𝑒 (𝑒1, . . . , 𝑒𝑛) may feature any

kind of expression for 𝑒 . An application whose receiver is a

class identifier (i.e., 𝑐 (𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛)) denotes a call to
the latter’s implicit initializer. In Swift, while all initializer

and method parameters are positional, they must also be

named at the call site by default, unless defined otherwise

explicitly. However, as of this writing, parameter names are

actually not part of a method’s type. This means that a func-

tion assigned to a variable, or passed as a parameter, cannot

be called with named parameters. We adopt a more consis-

tent approach in FS. In order to avoid determining an order

on property declarations and inheritance thereof, we always

require parameters to be named in calls to a class’ implicit

memberwise initializer. On the other hand, parameters to

method calls are kept positional only.

We distinguish two sorts of cast expressions: 𝑒 as 𝜏 is

called a guaranteed cast and 𝑒 as! 𝜏 is called a forced cast. FS’s
typing rules ensure that a guaranteed cast cannot trigger an

error at runtime, whereas such an assumption is not verified

statically for forced casts. We elide Swift’s safe casts (i.e.,

expressions of the form 𝑒 as? 𝜏 in Swift), as they involve

generic option types (a.k.a. the maybe monad [32]), which

are not supported in FS.

An expression can be typed by a class, a protocol compo-

sition (i.e., a set of protocols), a function type, or the special

type variable Self. The reader proficient in Swift will remark

the use of a legacy syntax for protocol composition, which

consists of a set of protocol identifiers enclosed in angle

brackets and prefixed by the keyword protocol. While no

longer supported, this syntax lets us express the empty com-

position protocol<> which corresponds to Swift’s built-in

Any type (i.e., an existential type without any requirement).

A method or property may refer to the type in which it is

declared, allowing the declaration of self-referencing types.

In protocol declarations and extensions, the special type vari-

able Self designates the concrete conforming type. In class

declarations and extensions, Self designates any derived

type that can inherit from the class:

1 class Parent: Object {

2 func identity() -> Self { self }

3 }

4 class Child: Parent {}

The type of the method identity depends on that of the

receiver. If the method is called on an object of type Parent,

then the result will be an instance of Parent. On the other

hand, if it is called on an object of type Child, then the result

will be an instance of Child. We elaborate further on the

reasons for this subtlety later.

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

3.2 Typing Semantics
We now describe FS’s typing semantics. We start by in-

troducing some notation to help formalizing predicates on

declarations more concisely. Let 𝜋 ∈ Π be a program, we

write 𝜋 ⊢ protocol 𝑝 : 𝑃 { 𝑅 } to denote that the proto-

col 𝑝’s declaration is part of the program 𝜋 . Similarly, we

write 𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 { 𝑉 𝑀 } for class declarations,

𝜋 ⊢ extension 𝑝 { 𝑀 } for protocol extensions and 𝜋 ⊢
extension 𝑐 : 𝑃 {𝑀 } for class extensions.We use letters dec-

orated with a tilde symbol (i.e., ∼) to denote declarations. Let
𝑑 be a protocol, class, property, method or method require-

ment declaration, we write 𝑑.name for its name and 𝑑.type
for its type. For example, let𝑚 = func𝑚(𝑥 : 𝜏) → 𝜎 {𝑒},
𝑚.name =𝑚 and𝑚.type = 𝜏 → 𝜎 .

Definition 3.2 (Signature equivalence). Let𝑚1 and𝑚2 be

two method or method requirement declarations. We say

that they are signature-equivalent, written𝑚1 ≈𝑚2, if their

names and type signatures are identical. More formally:

𝑚1 ≈𝑚2 ⇐⇒ 𝑚1 .name =𝑚2.name ∧𝑚1.type =𝑚2.type

Definition 3.3 (Class inheritance). Let 𝑐 and 𝑑 denote two

classes in a program 𝜋 , we write 𝜋 ⊢ 𝑐 ≤ 𝑑 if 𝑐 inherits

from 𝑑 in 𝜋 . Class inheritance is the reflexive and transitive

closure of the immediate subclass relation specified in class

declarations. In formal terms, let 𝑐 ,𝑑 and 𝑒 be class identifiers,

≤ is the minimal relation such that:

𝜋 ⊢ 𝑐 ≤ 𝑐

𝜋 ⊢ 𝑐 ≤ 𝑑 𝜋 ⊢ 𝑑 ≤ 𝑒

𝜋 ⊢ 𝑐 ≤ 𝑒

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 }

𝜋 ⊢ 𝑐 ≤ 𝑑

Definition 3.4 (Protocol conformance). Let 𝑝 and 𝑞 denote

two protocols in a program 𝜋 , we write 𝜋 ⊢ 𝑝 ⊑ 𝑞 if 𝑝

conforms to (i.e., inherits from) 𝑞 in 𝜋 . Similarly, let 𝑐 denote

a class, we write 𝜋 ⊢ 𝑐 ⊑ 𝑞 if 𝑐 conforms to 𝑞 in 𝜋 . Protocol

conformance (i.e., ⊑) is the reflexive and transitive closure

of the immediate conformance relations declared in protocol

and class declarations, as well as class extensions. In formal

terms, let 𝑝 , 𝑞 and 𝑟 be protocol identifiers, and 𝑐 and 𝑑 be

class identifiers, ⊑ is the minimal relation such that:

𝜋 ⊢ 𝑝 ⊑ 𝑝

𝜋 ⊢ protocol 𝑝 : 𝑄 { 𝑅 } 𝑞 ∈ 𝑄

𝜋 ⊢ 𝑝 ⊑ 𝑞

𝜋 ⊢ 𝑝 ⊑ 𝑞 𝜋 ⊢ 𝑞 ⊑ 𝑟

𝜋 ⊢ 𝑝 ⊑ 𝑟

𝜋 ⊢ 𝑐 ≤ 𝑑 𝜋 ⊢ 𝑑 ⊑ 𝑝

𝜋 ⊢ 𝑐 ⊑ 𝑝

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 }

𝑞 ∈ 𝑃

𝜋 ⊢ 𝑐 ⊑ 𝑞

𝜋 ⊢ extension 𝑐 : 𝑃 {𝑀 }

𝑞 ∈ 𝑃

𝜋 ⊢ 𝑐 ⊑ 𝑞

Example 3.5 (Protocol inheritance). Let 𝜋 be a program

defined as follows:

1 protocol P {}

2 protocol Q: P {}

3 protocol R {}

4 class C: Object, Q {}

5 class D: C, R {}

6 D()

From 𝜋 , we can deduce that 𝜋 ⊢ Q ⊑ P and 𝜋 ⊢ D ⊑ P.

Definition 3.6 (Conformance set). Let 𝜏 be a protocol or

class in a program 𝜋 . We write conf (𝜏, 𝜋) for the set of pro-
tocols to which 𝜏 conforms in 𝜋 . More formally:

conf (𝜏, 𝜋) = {𝑝 ∈ 𝐼𝑝 | 𝜋 ⊢ 𝜏 ⊑ 𝑝}

Example 3.7 (Conformance set). Let 𝜋 be the program il-

lustrated in Example 3.5. program defined as follows: From

𝜋 , we can deduce that conf (D, 𝜋) = {P, Q, R}.

Both the subtyping and the conformance relations allow us

to define polymorphic substitutability, which is referred to as

type coercion in Swift. This is a purely syntactical application

of Liskov’s substitution principle [29].

Definition 3.8 (Coercion). Let 𝜏 and 𝜎 be two types in a

program 𝜋 . We write 𝜋 ⊢ 𝜏 ⊴ 𝜎 if 𝜏 can be coerced into 𝜎 in

𝜋 . In more formal terms, let 𝜏 and 𝜎 denote two types and

let 𝑐 be a class identifier, coercion is defined as the minimal

relation such that:

𝜋 ⊢ 𝜏 ⊴ 𝜏

∀𝑖, 𝜋 ⊢ 𝜎𝑖 ⊴ 𝜏𝑖 𝜋 ⊢ 𝜏𝑟 ⊴ 𝜎𝑟

𝜋 ⊢ 𝜏1, . . . , 𝜏𝑛 → 𝜏𝑟 ⊴ 𝜎1, . . . , 𝜎𝑛 → 𝜎𝑟

𝜋 ⊢ 𝜏 ≤ 𝜎

𝜋 ⊢ 𝜏 ⊴ 𝜎

∀𝑝 ∈ 𝑃, 𝑐 ⊑ 𝑝

𝜋 ⊢ 𝑐 ⊴ protocol⟨𝑃⟩

∀𝑝 ∈ 𝑃, ∃𝑞 ∈ 𝑄, 𝜋 ⊢ 𝑝 ⊑ 𝑞

𝜋 ⊢ protocol⟨𝑃⟩ ⊴ protocol⟨𝑄⟩

Example 3.9 (Coercion). Let 𝜋 be the program illustrated

in Example 3.5. program defined as follows: From 𝜋 , we can

deduce that the following relations hold:

𝜋 ⊢ (C, C → D) ⊴ (D, C → C) 𝜋 ⊢ C ⊴ protocol⟨⟩

𝜋 ⊢ protocol⟨Q, R⟩ ⊴ protocol⟨P, R⟩

3.2.1 Name Lookup. We define a function props that ac-
cepts a class and returns the set of properties available in

that class. Note that props does not need to check extensions
nor conformed protocol, as these may only define additional

methods in FS.

props(Object, 𝜋) = ∅

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 } props(𝑑, 𝜋) = 𝑉 ′

props(𝑐, 𝜋) = 𝑉 ∪𝑉 ′

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

We define a function lookup𝑣 that returns the set of the prop-
erty declarations with the given name in the given class:

�̃� ∈ lookup𝑣 (𝑥, 𝑐, 𝜋) ⇐⇒ �̃� ∈ props(𝑐, 𝜋) ∧ �̃� .name = 𝑥

Example 3.10 (Property lookup). Let 𝜋 be a program de-

fined as follows:

1 class C: Object {}

2 class D: C { let foo: C }

3 class E: D { let bar: D }

4 E(foo: C(), bar: D(foo: C()))

We can deduce that props(E, 𝜋) contains let foo : C and

let bar : D. It follows that lookup(foo, D, 𝜋) = {let foo : C}.
Both class inheritance and protocol conformance con-

tribute to FS’s method lookup mechanism. The methods

that are associated with a class can be defined in the class’

declaration itself, in the declaration of another class from

which it inherits, in extensions of the class, or even in exten-

sions of the protocols to which the class conforms. While FS

does not support method overloading, it allows overriding.

A method declared in a class can be overridden in any of its

derived classes. Furthermore, methods required in a protocol

and implemented in an extension are meant to define a de-
fault behavior for all conforming types, and may therefore be

overridden as well. Method lookup is thus performed along

two dimensions. The first and most straightforward relates

to the class hierarchy. A method’s declaration is searched

starting from the most derived class and climbing up through

each superclass. Note that methods in class extensions are

interpreted as being part of the class declaration and be-

long to the class hierarchy. The second dimension relates to

protocol conformance. If a method’s declaration cannot be

found within the class hierarchy, it is searched within the

extensions of the protocol to which the class conforms.

Figure 2 illustrates different scenarios of method inheri-

tance and overriding. The protocols P, Q and R are all associ-

ated with a single default implementation for a method foo,

defined in protocol extensions at line 5, 10 and 15, respec-

tively. The protocol P additionally requires that conforming

types implement a method ham, as indicated by the method

requirement declared at line 2. Note also that the protocol R

inherits from both the protocols P and Q. The class A has only

one method, bar, defined directly in the class’ declaration,

at line 19. This method is inherited by the class B through

the traditional class inheritance mechanism. In addition, the

class B has a method ham, declared at line 23, which satisfies

the method requirement of the protocol P, whose confor-

mance is declared at line 22. By the same conformance, the

class also inherits the default implementation for the method

foo, declared at line 5. The class C1 has three methods foo,

bar and ham. However, the two former are overridden in

the class’ declaration, at line 27 and 28, respectively
4
. Note

4
Swift demands that overridden methods be explicitly prefixed with the

keyword override. We omit this requirement for the sake of conciseness.

1 protocol P {

2 func ham() -> B

3 }

4 extension P {

5 func foo() -> A { A() }

6 }

7

8 protocol Q {}

9 extension Q {

10 func foo() -> A { B() }

11 }

12

13 protocol R: P, Q {}

14 extension R {

15 func foo() -> A { C1() }

16 }

17

18 class A: Object {

19 func bar() -> A { A() }

20 }

21

22 class B: A, P {

23 func ham() -> B { B() }

24 }

25

26 class C1: B, Q {

27 func foo() -> A { C1() }

28 func bar() -> A { C1() }

29 }

30

31 class C2: B, Q, R {}

32 extension C2 {

33 func qux() -> A { C2() }

34 }

Figure 2. Examples of method overriding

that the method foo must be overridden. The choice of its
implementation would be ambiguous otherwise, as class C1

inherits the default implementations of both the protocols P

and Q. This is not the case for the class C2. The class conforms

to the protocol R and thus inherits the latter’s default im-

plementation, declared at line 15. The latter overrides those

associated with the protocols P and Q, since R refines both of

them. The class C2 also declares the method qux, but in an

extension at line 33, rather than directly in its declaration.

Let 𝑀, 𝑁 ∈ P(Md) ∪ P(Rd) be two sets of method and

method requirement declarations. We write 𝑁 ≫ 𝑀 the

union of𝑀 with 𝑁 subtracted by the declarations in𝑀 that

have a signature-equivalent declaration in 𝑁 . More formally:

𝑁 ≫ 𝑀 = {𝑚 ∈ 𝑀 | �𝑛 ∈ 𝑁,𝑚 ≈ 𝑛} ∪ 𝑁

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

We define a function xmeths that accepts a protocol or class
and gathers all methods declarations from its extensions.

For instance, let 𝜋 be the program shown in Figure 2, then

xmeths(R, 𝜋) = {func foo() → A { C1() }}. More formally,

let 𝜏 denote a protocol or a class in a program 𝜋 , xmeths(𝜏, 𝜋)
is the minimal set such that:

𝜋 ⊢ extension 𝜏 {𝑀 }

𝑀 ⊆ xmeths(𝜏, 𝜋)
𝜋 ⊢ extension 𝜏 : 𝑃 {𝑀 }

𝑀 ⊆ xmeths(𝜏, 𝜋)

We then define a function pmeths that accepts a protocol and
gathers all method requirements and default implementa-

tions that are either associated directly with this protocol,

or inherited from another protocol higher in its hierarchy.

For instance, let 𝜋 be the program shown in Figure 2, then

pmeths(R, 𝜋) = {func foo() → A { C1() }, func ham() →
B}. More formally, let 𝑝 denote a protocol in a program 𝜋 ,

pmeths(𝑝, 𝜋) is defined as the set such that:

𝜋 ⊢ protocol 𝑝 : 𝑄 { 𝑅 } 𝑀 = xmeths(𝑝, 𝜋)
CS = conf (𝑝, 𝜋) − {𝑝} 𝑀CS =

⋃
𝑞∈CS

pmeths(𝑞, 𝜋)

pmeths(𝑝, 𝜋) = (𝑀 ≫ 𝑅) ≫ 𝑀CS

Note that pmeths does not apply overriding between proto-

cols that do not have a conformance relationship. In other

words, if two protocols 𝑞 and 𝑟 belong to the conformance

set of some protocol 𝑝 in a program 𝜋 such that neither

𝜋 ⊢ 𝑞 ⊑ 𝑟 nor 𝜋 ⊢ 𝑟 ⊑ 𝑞, then all requirements and default

implementations of 𝑞 and 𝑟 are inherited by 𝑝 , even if they

have the same signature. This is why foomust be overridden

by the class C1 in the program shown in Figure 2. We show

later how FS’s type system checks that ambiguous method

references are rejected in a well-typed program.

Similarly to pmeths, we define a function cmeths that ac-
cepts a class and gathers all methods and method require-

ments that are declared directly in the class’ declaration, or

its extensions, or inherited from a superclass, or inherited

as a default implementation from a conformed protocol. We

decompose the lookup process into three steps. First, let 𝑐 be

a class in a program 𝜋 , we write cmeths0 (𝑐, 𝜋) for the set of
methods declared directly within its declaration and exten-

sions. For instance, let 𝜋 be the program shown in Figure 2,

cmeths0 (B, 𝜋) is a singleton containing the method ham’s dec-

laration. More formally, cmeths0 is defined as follows:

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 }

cmeths0 (𝑐, 𝜋) = 𝑀 ∪ xmeths(𝑐, 𝜋)

Next, we write cmeths1 (𝑐, 𝜋) for the set that also includes

the declarations inherited from superclasses. For instance,

cmeths1 (B, 𝜋) contains the declarations for ham and bar, in-

herited from the class A in the program shown in Figure 2.

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 { . . . }

cmeths1 (𝑐, 𝜋) = cmeths0 (𝑐, 𝜋) ≫ cmeths1 (𝑑, 𝜋)

Finally, we write cmeths(𝑐, 𝜋) for the set that also gathers

the implementations associated with conformed protocols:

CS = conf (𝑐, 𝜋)
𝑀𝑋 =

⋃
𝑞∈CS

xmeths(𝑞, 𝜋) 𝑀 = cmeths1 (𝑐, 𝜋) ≫ 𝑀𝑋

𝑀 ′ = {𝑚[Self ↦→ 𝑐] | 𝑚 ∈ 𝑀}
cmeths(𝑐, 𝜋) = 𝑀 ′

Recall that methods defined in the class hierarchy take prece-

dence over method requirements and default implementa-

tions, even if the conformance is not defined on a super-

class. More formally, if a declaration𝑚𝑐 appears in a class

𝑐 or any superclass 𝑑 such that 𝜋 ⊢ 𝑐 ≤ 𝑑 , and a protocol

𝑞 ∈ conf (𝑐, 𝜋) defines a requirement or default implementa-

tion𝑚𝑞 , then𝑚𝑐 ≈ 𝑚𝑞 =⇒ 𝑚𝑞 ∉ cmeths(𝑐, 𝜋). Moreover,

notice that cmeths substitutes references to Self by the class
for which it builds the set of methods. For instance, if a

class 𝑐 conforms to a protocol with a default implementation

func foo(𝑥 : Self) → Self { 𝑥 }, then it will be transformed

as func foo(𝑥 : 𝑐) → 𝑐 {𝑥 } in cmeths(𝑐, 𝜋). We define a func-

tion lookup𝑐𝑚 that returns the set of methods and method

requirements with the given name in the given class:

lookup𝑐𝑚 (𝑥, 𝑐, 𝜋) = {𝑚 ∈ cmeths(𝑐, 𝜋) | 𝑚.name = 𝑥}
Similarly, we define a function lookup𝑝𝑚 that returns the set

of method requirement and default implementations with

the given name in the given protocol:

lookup𝑝𝑚 (𝑥, 𝑝, 𝜋) = {𝑚 ∈ pmeths(𝑝, 𝜋) | 𝑚.name = 𝑥}

Example 3.11 (Method lookup). Let 𝜋 be the program in

Figure 2. The set cmeths0 (C2, 𝜋) of methods declared within

C2’s declaration contains only func qux() → A { C2() }. The
set cmeths1 (C2, 𝜋) that also includes the methods declared

in C2’s class hierarchy additionally contains func ham() →
B { B() } and func bar() → A { A() }. Finally, the set con-
taining the four methods available to the class C2 is given

by cmeths(C2, 𝜋) = {func ham() → B { B() }, func bar() →
A { C2() }, func foo() → A { C1() }, func qux() → A { C2() }}
3.2.2 Type Checking. The typing rules for expressions

are presented in Figure 3. All rules are described in the form

of a typing judgment 𝜋, Γ ⊢ 𝑒 : 𝜏 , where 𝜋 is a program, Γ
is a mapping from variable identifiers to types, 𝑒 is an ex-

pression and 𝜏 is the type of the expression. We draw the

reader’s attention on a few subtleties. The rules TE-CProp

and TE-CMeth correspond to the typing of a class member

selection (i.e., a property or a method). Recall that lookup𝑣
and lookup𝑐𝑚 returns sets of declarations. Consequently, the

rules check that there is at least one candidate. However, it

does not ensure that this candidate is unique, which could

lead to ambiguous situations. Fortunately, this cannot hap-

pen in a well-typed program because the typing rule for

class declaration (described later) ensures that class mem-

bers are not overloaded. The same assumption does not hold

for protocol compositions (i.e., a protocol composition can

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

TE-Var

𝜏 = Γ(𝑥)
𝜋, Γ ⊢ 𝑥 : 𝜏

TE-GCast

𝜋, Γ ⊢ 𝑒 : 𝜎
𝜋 ⊢ 𝜎 ⊴ 𝜏 inst (𝜏, 𝜋)

𝜋, Γ ⊢ (𝑒 as 𝜏) : 𝜏

TE-FCast

𝜋, Γ ⊢ 𝑒 : 𝜎
𝜋 ⊢ 𝜏 ⊴ 𝜎 inst (𝜏, 𝜋)

𝜋, Γ ⊢ (𝑒 as! 𝜏) : 𝜏

TE-CProp

𝜋, Γ ⊢ 𝑒 : 𝑐
�̃� ∈ lookup𝑣 (𝑥, 𝑐, 𝜋)
𝜋, Γ ⊢ 𝑒.𝑥 : �̃� .type

TE-CMeth

𝜋, Γ ⊢ 𝑒 : 𝑐
𝑚 ∈ lookup𝑐𝑚 (𝑥, 𝑐, 𝜋)
𝜋, Γ ⊢ 𝑒.𝑥 :𝑚.type

TE-PMeth

𝜋, Γ ⊢ 𝑒 : protocol⟨𝑃⟩
{𝑚} =

⋃
𝑝∈𝑃

lookup𝑝𝑚 (𝑥, 𝑝, 𝜋)

𝜋, Γ ⊢ 𝑒.𝑥 :𝑚.type

TE-Call

𝜋, Γ ⊢ 𝑒 : (𝜏1, . . . , 𝜏𝑛) → 𝜏

∀𝑖, 𝜋, Γ ⊢ 𝑒𝑖 : 𝜎𝑖 ∀𝑖, 𝜋 ⊢ 𝜎𝑖 ⊴ 𝜏𝑖

𝜋, Γ ⊢ 𝑒 (𝑒1, . . . , 𝑒𝑛) : 𝜏

TE-Init

props(𝑐, 𝜋) = {�̃�1, . . . , �̃�𝑛} ∀𝑖, 𝜋, Γ ⊢ 𝑒𝑖 : 𝜎𝑖
∀𝑖, �̃�𝑖 .name = 𝑥𝑖 ∧ 𝜋 ⊢ 𝜎𝑖 ⊴ �̃�𝑖 .type

𝜋, Γ ⊢ 𝑐 (𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛) : 𝑐

Figure 3. Featherweight Swift’s expression typing

be associated with overloaded symbols). As a result, the rule

T-PMeth must also check for the candidate’s uniqueness.

A cast is statically “guaranteed” (TE-GCast) if the type of

the expression to cast can be coerced into the specified type.

On the other hand, a cast whose specified type is a subtype of

the expression’s type cannot be type-checked statically, and

is therefore dubbed “forced” (TE-FCast). Note that casting

between completely unrelated types (i.e., a pair 𝜏, 𝜎 such that

neither 𝜋 ⊢ 𝜏 ≤ 𝜎 nor 𝜋 ⊢ 𝜎 ≤ 𝜏) necessarily results in a type
error. Recall that protocols with self requirements cannot

be used to type an expression, due to the binary method

problem [10]. Hence, casting rules must also ensure whether

the specified type is instantiable, which is performed by

checking a predicate inst, formally defined as follows:

𝜋 ⊢ protocol 𝑝,𝑄 { 𝑅 }

∀𝑞 ∈ 𝑄, inst (𝑞, 𝜋)
∀̃𝑟 ∈ 𝑅, inst (�̃� .type, 𝜋)

inst (𝑝, 𝜋)

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 { . . . }

inst (𝑑, 𝜋)
inst (𝑐, 𝜋)

inst (Object, 𝜋)
∀𝑞 ∈ 𝑃, inst (𝑞, 𝜋)

inst (protocol⟨P⟩, 𝜋)

∀𝑖 ∈ {0, . . . , 𝑛}, 𝜏𝑖 ≠ Self ∧ inst (𝜏𝑖 , 𝜋)
inst (𝜏1, . . . , 𝜏𝑛 → 𝜏0, 𝜋)

The type-checking rules are presented in Figure 4. Typ-

ing a program (TD-Program) consists of type-checking all

its declarations as well as the expression that represents its

behavior. Type-checking for class declarations guarantees

that all the requirements from the protocols to which the

class conforms are actually fulfilled. Notice that protocol con-

formance is not a structural property. In other words, even

if a class 𝑐 has an implementation for all the method require-

ments in 𝑝 , 𝑐 |= 𝑝 does not hold unless 𝑝 is explicitly defined

as a protocol to which 𝑐 must conform (i.e., 𝑝 ∈ conf (𝑐)). We

write impls(𝑐) ⊆ cmeths(𝑐) the set of complete method dec-

larations associated with 𝑐 , that is the set of declarations that

have a body, and define conformance checking as follows:

Definition 3.12 (Protocol conformance checking). Let 𝑐 be

a class and 𝑝 a protocol in a program 𝜋 such that 𝜋 ⊢ 𝑐 ⊑ 𝑝 .

We say that 𝑐 satisfies its conformance to 𝑝 , written 𝜋 ⊢ 𝑐 |= 𝑝 ,

if it has a single implementation for each of the method

requirements defined by 𝑝 and the protocols from which 𝑝

inherits. More formally, ⊑ is the minimal relation such that:

𝜋 ⊢ 𝑐 ⊑ 𝑝 𝜋 ⊢ protocol 𝑝 : 𝑄 { 𝑅 }

∀̃𝑟 ∈ 𝑅, ∃!𝑚 ∈ impls(𝑐),𝑚 ≈ �̃�

∀𝑞 ∈ conf (𝑝, 𝜋) − {𝑝}, 𝜋 ⊢ 𝑐 |= 𝑞

𝜋 ⊢ 𝑐 |= 𝑝

Type-checking for method declarations is described by

TD-PMeth and TD-CMeth, which determine whether a dec-

laration is valid in the context of the protocol or class, re-

spectively. Both rules verify that the type of the method’s

body is compatible with the method’s signature. This is done

in a fresh typing environment, in which only self and the

method’s parameters are defined, to prevent methods from

capturing any identifiers by closure. Recall that overriding

does not apply to protocols’ requirements and default imple-

mentations. Nonetheless, FS’s type system requires that all

methods with the same name have the same signature, which

is checked in rule TD-PMeth. The rule TD-Protocol checks

that the conformance set of a protocol 𝑝 forms a directed

acyclic graph rooted by 𝑝 , to avoid circular inheritance. It also

prevents protocol extensions to declare a method implemen-

tationwithout amatching requirement, thus disallowing stat-

ically dispatched methods. Class declarations additionally

require that properties and methods cannot be overloaded.

There should be a single implementation of each class mem-

ber, which is checked in rules TD-CProp and TD-CMeth. This

is not a requirement in TD-PMeth, as a protocol may receive

multiple default implementations from the protocols that it

refines. Consequently, a class that inherits multiple default

implementations (typically obtained via different protocol

extensions) must override them, so that method calls are

not ambiguous. For instance, the declaration of the class C1

in Figure 2 would no longer be well-typed if line 27 were

commented out.

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

TD-Program

∀𝑝 ∈ 𝑃, (𝑃,𝐶,𝑋, 𝑒) ⊢ 𝑝 : 𝑝.name
∀̃𝑐 ∈ 𝐶, (𝑃,𝐶,𝑋, 𝑒) ⊢ �̃� : �̃� .name

(𝑃,𝐶,𝑋, 𝑒),∅ ⊢ 𝑒 : 𝜏
⊢ (𝑃,𝐶,𝑋, 𝑒) : 𝜏

TD-Protocol

�𝑞 ∈ conf (𝑝, 𝜋), 𝑞 ⊑ 𝑝

∀𝑚 ∈ xmeths(𝑝, 𝜋), ∃�̃� ∈ 𝑅,𝑚 ≈ �̃�

∀𝑚 ∈ pmeths(𝑝, 𝜋), (𝜋, 𝑝) ⊢𝑚 :𝑚.type

𝜋 ⊢ protocol 𝑝, 𝑃 { 𝑅 } : 𝑝

TD-Class

∀𝑝 ∈ conf (𝑐, 𝜋), 𝜋 ⊢ 𝑐 |= 𝑝

∀̃𝑣 ∈ props(𝑐, 𝜋), (𝜋, 𝑐) ⊢ �̃� : �̃� .type
∀𝑚 ∈ cmeths(𝑐, 𝜋), (𝜋, 𝑐) ⊢𝑚 :𝑚.type

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 } : 𝑐

TD-PReq

∀𝑚 ∈ lookuppm (𝑥, 𝑝, 𝜋),𝑚.type = 𝜏1, . . . , 𝜏𝑛 → 𝜏

𝜋, 𝑝 ⊢ func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏 : 𝜏1, . . . , 𝜏𝑛 → 𝜏

TD-CProp

∥ lookup𝑣 (𝑥, 𝑐, 𝜋) ∥= 1

𝜋, 𝑐 ⊢ (let 𝑥 : 𝜏) : 𝜏

TD-PMeth

𝜋, [self ↦→ 𝑝, 𝑥1 ↦→ 𝜏1, . . . , 𝑥𝑛 ↦→ 𝜏𝑛] ⊢ 𝑒 : 𝜎 𝜋 ⊢ 𝜎 ⊴ 𝜏

∀𝑚 ∈ lookuppm (𝑥, 𝑝, 𝜋),𝑚.type = 𝜏1, . . . 𝜏𝑛 → 𝜏

𝜋, 𝑝 ⊢ func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏 { 𝑒 } : 𝜏1, . . . , 𝜏𝑛 → 𝜏

TD-CMeth

∥ lookupcm (𝑥, 𝑐, 𝜋) ∥= 1

𝜋, [self ↦→ 𝑐, 𝑥1 ↦→ 𝜏1, . . . , 𝑥𝑛 ↦→ 𝜏𝑛] ⊢ 𝑒 : 𝜎 𝜎 ⊴ 𝜏

𝜋, 𝑐 ⊢ func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏 { 𝑒 } : 𝜏1, . . . , 𝜏𝑛 → 𝜏

Figure 4. Featherweight Swift’s declaration typing

3.3 Operational Semantics
As mentioned earlier, thanks to the omission of assignment,

FS’s semantics can be defined purely within its syntax. How-

ever, because methods are first-class citizens in FS, we need

a way to represent bounded methods (i.e., methods in which

references to self are bound to a receiver) as first-class

terms. This is done by “demoting” a method to a non-member

function in which all occurrences of self are syntactically

substituted by the receiver. FS does not support unbounded

methods: an expression of the form 𝑐.𝑚 is not well-typed if

𝑐 ∈ 𝐼𝑐 is a class identifier, as we would be unable to bind oc-

currences of self to a proper class instance. The set of values

V to which a terminating program may evaluate is therefore

composed of bounded methods and class initializers only.

More formally, it is defined inductively as the minimal set

such that Md ⊆ V and 𝑐 (𝑥1 : 𝑣1, . . . , 𝑥𝑛 : 𝑣𝑛) ∈ V, where
𝑐 ∈ 𝐼𝑐 is a class identifier, 𝑥1, . . . , 𝑥𝑛 ∈ 𝐼𝑥 are property names

and 𝑣1, . . . , 𝑣𝑛 ∈ V are values.

We describe FS’s operational semantics as “big-step” se-

mantics rules, with a judgement of the form 𝜋 ⊢ 𝑒 ⇓ 𝑣 , where

𝜋 ∈ Π is a program, 𝑒 ∈ 𝐸 is an expression and 𝑣 ∈ V is a

value. All rules are presented in Figure 5. Unbounded meth-

ods are bound upon method selection by the rule E-Meth. It

results that function calls can remain completely agnostic

of this process, and simply substitute function parameters

with their corresponding argument (rule E-Call).

Example 3.13. Consider the expression following expres-

sion, defined in the context of the program shown in Figure 1:

Pair(fst: A(), snd: B(foo: A())) . snd

. duplicated() . withFst(C(foo: A(), bar: A()))

The following steps describe the evaluation of this expression.

The rule E-Call applies first to evaluate the call to themethod

withFst. This triggers the evaluation of the function’s callee,

which happens to be another function call.

Pair(fst: A(), snd: B(foo: A())) . snd

. duplicated() . withFst(C(foo: A(), bar: A()))

The rule E-Call applies again, this time to evaluate the call

to the method duplicated. This triggers the evaluation of

the function’s callee, which is the access class property snd:

Pair(fst: A(), snd: B(foo: A())) . snd

. duplicated() . withFst(C(foo: A(), bar: A()))

The rule E-Prop applies on the property selection, evaluating

Pair(fst: A(), snd: B(foo: A())) with the rule E-Init.

The term remains unchanged, as it is already in reduced

form (i.e., it only features calls to class initializers). Therefore

E-Prop’s application produces a term B(foo: A()) (i.e., the

second element of the pair), which now acts as the receiver

for the call to duplicated:

B(foo: A()) . duplicated()

. withFst(C(foo: A(), bar: A()))

This results in the pair Pair(fst: B(foo: A()), snd: B(

foo: A())), allowing the call to withFst to be evaluated:

Pair(fst:C(foo: A(), bar: A()), snd:B(foo: A()))

The program successfully terminates with this term, which

cannot be further reduced.

The rule E-FCast, which corresponds to the evaluation

of an forced cast, refers to a function typeof to obtain the

runtime type of a particular term, formally given as follows:

typeof (𝑐 (𝑥1 : 𝑣1, . . . , 𝑥𝑛 : 𝑣𝑛)) = 𝑐

typeof (func 𝑥 (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛) → 𝜏) = 𝜏1, . . . , 𝜏𝑛 → 𝜏

The reader will notice that protocols are completely absent

from the operational semantics, including the definition of

the function typeof . Indeed, while protocols may be use

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

E-Init

∀𝑖, 𝜋 ⊢ 𝑒𝑖 ⇓ 𝑣𝑖

𝜋 ⊢ 𝑐 (𝑥1 : 𝑒1, . . . , 𝑥𝑛 : 𝑒𝑛) ⇓ 𝑐 (𝑥1 : 𝑣1, . . . , 𝑥𝑛 : 𝑣𝑛)

E-Prop

𝜋 ⊢ 𝑒 ⇓ 𝑐 (. . . , 𝑥𝑖 : 𝑣𝑖 , . . .)
𝜋 ⊢ 𝑒.𝑥𝑖 ⇓ 𝑣𝑖

E-FCast

𝜋 ⊢ 𝑒 ⇓ 𝑣 𝜋 ⊢ typeof (𝑣) ⊴ 𝜏

𝜋 ⊢ 𝑒 as! 𝜏 ⇓ 𝑣

E-Meth

𝜋 ⊢ 𝑒 ⇓ 𝑐 (𝑣)
{func 𝑥 (𝑝) → 𝜏 { 𝑒 }} = lookupcm (𝑥, 𝑐, 𝜋)

𝜋 ⊢ 𝑒.𝑥 ⇓ func 𝑥 (𝑝) → 𝜏 { 𝑒 [self ↦→ 𝑐 (𝑣)] }

E-Call

𝜋 ⊢ 𝑒 ⇓ func 𝑥 (𝑥1 : 𝜏1, . . . 𝑥𝑛 : 𝜏𝑛) → 𝜏 { 𝑒 ′ }
∀𝑖, 𝜋 ⊢ 𝑒𝑖 ⇓ 𝑣𝑖 𝜋 ⊢ 𝑒 ′[𝑥1 ↦→ 𝑣𝑖 , . . . , 𝑥𝑛 ↦→ 𝑣𝑛] ⇓ 𝑣

𝜋 ⊢ 𝑒 (𝑒1, . . . , 𝑒𝑛) ⇓ 𝑣

E-GCast

𝜋 ⊢ 𝑒 ⇓ 𝑣

𝜋 ⊢ 𝑒 as 𝜏 ⇓ 𝑣

Figure 5. Featherweight Swift’s operational semantics

to type an expression, runtime values can only be class in-

stances and bounded methods.

3.4 Properties
This section presents some key properties of FS’s type system.

The first relate to overloading and guarantees that classes

do not define overloaded properties and/or methods in a

well-typed program. The two first lemmas imply that there

is a unique declaration corresponding to a name lookup in

the rules TE-CProp and TE-CMeth, which respectively cor-

respond to the resolution of property and method names.

The third additionally guarantees that𝑚 be a proper method

declaration and not a mere requirement in TE-CMeth.

Lemma 3.14. Let 𝑐 denote a class in a well-typed program
𝜋 ∈ Π, then 𝑐 does not define any overloaded property.

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 }

=⇒ ∀𝑥 ∈ 𝐼𝑥 , ∥ lookup𝑣 (𝑥, 𝑐, 𝜋) ∥≤ 1

Proof. The proof is straightforward by TD-Class. □

Lemma 3.15. Let 𝑐 denote a class in a well-typed program
𝜋 ∈ Π, then 𝑐 does not define any overloaded method.

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 }

=⇒ ∀𝑥 ∈ 𝐼𝑥 , ∥ lookupcm (𝑥, 𝑐, 𝜋) ∥≤ 1

Proof. The proof is straightforward by TD-Class. □

Lemma 3.16. Let 𝑐 denote a class in a well-typed program
𝜋 ∈ Π, then all methods𝑚 ∈ cmeths(𝑐, 𝜋) have an implemen-
tation.

𝜋 ⊢ class 𝑐 : 𝑑, 𝑃 {𝑉 𝑀 } =⇒ ∀𝑚 ∈ cmeths(𝑐, 𝜋),𝑚 ∈ Md

Proof. The proof is straightforward by TD-Class. □

Next, we state the substitution lemmas.

Lemma 3.17. Let 𝜏 and 𝜎 be two types in a well-typed pro-
gram 𝜋 such that 𝜋 ⊢ 𝜏 ⊴ 𝜎 . The set of properties and methods
of 𝜎 is a subset of the set of properties and methods of 𝜏 .

• if 𝜏 ∈ 𝐼𝑐 and 𝜎 ∈ 𝐼𝑐 denote classes, then props(𝜎, 𝜋) ⊆
props(𝜏, 𝜋) and cmeths(𝜎, 𝜋) ⊆ cmeths(𝜏, 𝜋);

• if 𝜏 ∈ 𝐼𝑐 denotes a class and 𝜎 = protocol⟨𝑃⟩ is an in-
stantiable protocol composition for some set of protocols
𝑃 ⊆ P(𝐼𝑝), then

⋃
𝑝∈𝑃 pmeths(𝑝, 𝜋) ⊆ cmeths(𝜏, 𝜋);

• if 𝜏 = protocol⟨𝑃⟩ and 𝜎 = protocol⟨𝑄⟩ are two
protocol compositions for some sets of protocols 𝑃,𝑄 ⊆
P(𝐼𝑝), then

⋃
𝑞∈𝑄 pmeths(𝑞, 𝜋) ⊆ ⋃

𝑝∈𝑃 pmeths(𝑝, 𝜋).

Proof. The proof is by induction on the definition of the

coercion operator (Definition 3.8). □

Lemma3.18. Let 𝑒 be a well-typed expression such that 𝜋, Γ ⊢
𝑒 : 𝜏 . Let Γ′ be typing context such that ∀𝑥 ∈ dom(Γ), Γ′(𝑥) ⊴
Γ(𝑥). Then 𝜋, Γ′ ⊢ 𝑒 : 𝜏 ′ and 𝜏 ′ ⊴ 𝜏 .

Proof. The proof is by induction over the derivation FS’s

expression typing (Figure 3). □

FS supports recursion through self. As we chose to ex-

press its operational semantics with big step inference rules

(in part to sidestep the so-called stupid cast problem [23]),

stating type soundness with the usual progress and preser-

vation theorems [42] requires to take diverging evaluations

into account. This disqualifies the classical approach which

consists of defining a predicate 𝜋 ⊢ 𝑒 ⇓ error to character-

ize type errors, as it does not allow the distinction between

well-typed programs that terminate and those that diverge.

Another strategy is to rely on coinduction to define a relation

of the form 𝜋 ⊢ 𝑒 ⇓∞ which denotes non-terminating evalu-

ations [26]. Although we do not include such definitions, for

spatial reasons, we state type soundness with this principle.

Lemma 3.19 (Preservation). Let 𝑒 is a well-typed expression
such that 𝜋,∅ ⊢ 𝑒 : 𝜏 and 𝜋 ⊢ 𝑒 ⇓ 𝑣 , then 𝜋,∅ ⊢ 𝑣 : 𝜎 =⇒
𝜎 ⊴ 𝜏 .

Proof. The proof is by induction over the derivation of the

relation 𝜋 ⊢ 𝑒 ⇓ 𝑣 (Figure 5), using the substitution lemmas.

□

Lemma 3.20 (Progress). Let 𝑒 is a well-typed expression such
that 𝜋,∅ ⊢ 𝑒 : 𝜏 and �𝑣, 𝜋 ⊢ 𝑒 ⇓ 𝑣 , then 𝜋 ⊢ 𝑒 ⇓∞.

Proof (Structure). The proof is by coinduction and case anal-

ysis over 𝑒 . □

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

Theorem 3.21 (Type Soundness). Let 𝑒 is a well-typed ex-
pression such that 𝜋,∅ ⊢ 𝑒 : 𝜏 , then either 𝜋 ⊢ 𝑒 ⇓∞ or
∃𝑣, 𝜋 ⊢ 𝑒 ⇓ 𝑣 .

4 Reasoning About Swift
The design of FS allowed us to unveil or rediscover a handful

of bugs with the official implementation of Swift’s compiler.

These bugs were discovered on the version 5.1.2. Three of

them directly affect the language’s handling of protocol com-

position. However, one relates to unbounded methods [37],

which were supported in an earlier design of FS’s type sys-

tem but were eventually dropped for the sake of simplicity,

and another involves generic types [24]. The remainder of

this section focuses on the third one [36].

Swift protocols may refer to the variable Self to serve as

a placeholder for the types that conform to them. It follows

that if Self appears in a method requirement, then conform-

ing types must implement a method that substitutes it with

themselves. For instance, consider the following protocol:

1 protocol Boxable {

2 func boxed() -> Self

3 }

Boxable defines a single requirement for a method boxed

that returns instances of the conforming type. Because of

class inheritance, there is one important caveat to consider

when conforming to this protocol. Indeed, the following class

declaration is not well-typed:

1 class List: Boxable {

2 let next: List?

3 func boxed() -> List { List(next: self) }

4 }

While List satisfies Boxable’s requirements, a subclass will

not. It will inherit a method boxed with a type () → List,

which does not match its corresponding requirement. The

solution is to substitute List with Self so that the method

declaration refers to the type of the subclass. Unfortunately,

this introduces another problem, as the type of the expression

List(next: self) is not compatible with Self. A simple

workaround is to force cast the expression:

1 class List: Boxable {

2 let next: List?

3 func boxed() -> Self {

4 List(next: self) as! Self

5 }

6 }

7

8 class DerivedList: List {

9 let foo: String

10 }

11

12 print(DerivedList(foo: "bar", next: nil)

13 .boxed().foo)

This program is now well-typed in both Swift and FS but

should fail at runtime with a cast error. At line 12, the method

boxed is invoked with a type () → DerivedList. Hence,

Self should refer to DerivedList rather than List. It fol-

lows that List(next: self) as! DerivedList must fail,

because List is not a subclass of DerivedList. However, as

of the version 5.1.2, Swift would not detect such a failure and

happily cast an instance of List as a DerivedList, thus by-

passing type safety. Consequently, the program would have

an undefined behavior upon accessing the property foo on

the value returned from the method call.

We discovered this bug while stating FS’s progress theo-

rem. In order to review each case of the operational semantics

systematically, we designed a collection of use-cases to test

various derivation scenarios and compare them to actual ex-

ecutions to validate the result of our semantics. This eventu-

ally led us to the above program. It turns out that the problem

is obvious under FS’s semantics. Since List ⋪ DerivedList,

the rule E-FCast cannot apply and the derivation is stuck at

the cast expression.

5 Related Work
There is a rich literature dedicated to the study of program-

ming languages by the means of minimal core calculi, usu-

ally building on top of the _-calculus. Unfortunately, in its

simplest, purest form, the _-calculus is not ideal to reason

about object-oriented abstractions, such as inheritance and

composition. This has spawned the development of several

calculi, including highly influential work such as Abadi and

Cardelli’s object calculus [1] and Featherweight Java [23].

This work borrows heavily from the latter. FJ is a popular lan-

guage calculus that aims to provide a sound base for studying

extensions to the Java language. Just as FS, it discards most

of Java’s features to focus on a minimal functional subset

akin to the _-calculus. FS differs from FJ in three significant

ways. The first obviously relates to protocols, which add an

extra dimension to method lookup and type polymorphism.

Nonetheless, intuitions about substitution lemmas remain

identical. The second difference is that methods in FS are

first-class citizens. As such, they may be passed as arguments

or returned from a function, whereas Featherweight Java

is a first-order calculus. This slightly complicates the typ-

ing rules and operational semantics related to method calls,

since we cannot assume that 𝑒 is necessarily an expression

of the form 𝑒0 .𝑚 in a method call 𝑒 (𝑒1, . . . , 𝑒𝑛). Lastly, FS is
formalized in terms of a “big-step” operational semantics,

whereas FJ is formulated using “small-step” semantics. This

provides the calculus with a simpler model to express com-

plex features such as concurrency and exceptions, although

these shortcomings can be tackled by expressing properties

on derivation at a meta-level [35]. On the other hand, this

introduces inconsistencies in the derivation of expressions

whose evaluation order has to be taken into account. For

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

instance, a special rule has to be defined to state the progress

theorem with respect to failed cast expressions.

There exist a number of theoretical work aimed at for-

malizing protocol-oriented approaches. Traits, from which

Swift protocols directly derive, are introduced in [39] for

an untyped calculus [19]. The first attempt to type-check

them statically is proposed in [20]. While their language

offers more features than FS, including for instance property

updates (i.e. assignments), composition is only supported

for disjoint traits (i.e. traits without any common methods),

and support for casting is limited. This latter limitation is

addressed in [40]. Another paper, more closely related to

this work, studies traits as an extension of FJ called Feath-

erTrait [28]. While FS only relies on overriding to disam-

biguate overlapping default implementations, FeatherTrait

also formalizes aliasing and exclusion as composition mech-

anisms [33]. However, traits must be type-checked every

time they are imported into a class, whereas protocol type-

checking only occurs once in FS, promoting modularity. This

limitation is later addressed in [27] by treating trait compo-

sitions as interfaces. FS adopts a similar approach, defining

type coercion over class inheritance and protocol composi-

tion. More recent work on calculi with traits focus on state

(e.g. [6, 16]) and behavioral properties (e.g. [3, 17]).

The POP discipline can be adopted in a variety of program-

ming languages, including Scala, that shares a number of

similarities with Swift with respect to its features and design

choices. A formalization of Scala’s type system is presented

in the form of a core calculus, that includes traits [15]. The

model features a more complex lookup mechanism than FS

to accommodate the richer, more expressive set of type con-

structions supported by the Scala language. Typescript and

Go are two modern languages that offer a different take on

POP, using structural typing as a mechanism for retroactive

modeling. This contrasts with FS, which requires protocol

conformance to be explicitly stated in type declarations or

extensions thereof. Both TypeScript and Go have been for-

malized in the form of core language calculi [7, 22].

6 Conclusion and Future Directions
We have presented Featherweight Swift, a core calculus to

understand and reason about Swift’s type system. Our ap-

proach mimics that of Featherweight Java [23]. FS drops

all non-essential features and focuses only on the funda-

mental concepts that characterize Swift’s type system. Our

language comes with classes and protocol inheritance, sup-

ports retroactive modeling, and reproduces Swift’s overrid-

ing mechanisms. On the other hand, it discards local and

global variables, exceptions, concurrency and assignment.

As a result, its syntax and semantics can be defined concisely,

in a style reminiscent of the _-calculus, and highlight Swift’s

type coercion and method lookup mechanism clearly and

unambiguously.

We have discussed how FS served us to reason about

Swift’s semantics, which eventually led us to the discovery

of a few bugs. This convinces us of the necessity to provide

language users and developers alike with a suitable formal

framework to generalize assumptions and envision how new

ideasmay interact with existing features. The entry barrier to

new, modern programming languages is constantly pushed

higher, as elaborate typing mechanisms make their way into

mainstream languages. Therefore, it is paramount that these

be accompanied by rigorous definitions.

This work prompts a number of exciting perspectives for

future developments:

• Generic types contribute significantly to the power of

Swift’s type system, in particular when used in concert

with protocols, and would therefore constitute a wel-

comed extension of our work. Although the generic

extension of FJ [23] is an obvious starting point, one

challenge is to provide a support for Swift’s bounded

polymorphism [11], whereas most approaches are re-

stricted to parametric polymorphism. Fortunately, the

more recent formalization of Go [22] provides promis-

ing insights to tackle this issue.

• Another natural extension would relate to the support

of assignments. Once again, a number of extensions

to Featherweight Java have already been proposed

(e.g. [8, 30]). Here, the challenge is to properly repro-

duce Swift’s distinction between value and reference

types [35]. A promising lead in that direction would be

to adopt a similar approach as Giannini’s pure impera-

tive calculus [21], that proposes to represent aliasing

directly at the syntactic level.

• A third axis relates to concurrency. Although Swift’s

current concurrency model is based on a traditional

multithreaded approach (for which FJ extensions have

already been proposed [12, 34]), future implementa-

tions will feature actors on the top of coroutines [25].

Hence, a formal framework to reason about such ap-

proaches in the context of Swift’s type system would

be of great interest. There exist multiple language

calculi from which we can draw inspiration in that

front [5, 18].

• Some of the features that we have dismissed can be

easily encoded on top of FS, but a formalization of

these encodings has yet to be provided to validate their

soundness. This would let us study a larger subset of

Swift, for instance, to reason about observers, lazy, and

computed properties.

Acknowledgments
The authors would like to thank the members of the Swift

forums community for their precious help in the understand-

ing of some of the most intricate edge cases of Swift’s type

system, and for their feedback on early drafts of this paper.

SLE ’20, November 16–17, 2020, Virtual, USA Dimitri Racordon and Didier Buchs

References
[1] Martín Abadi and Luca Cardelli. 1995. A Theory of Primitive Objects:

Second-Order Systems. Science of Computer Programming 25, 2-3

(1995), 81–116. https://doi.org/10.1016/0167-6423(95)00010-0
[2] Martín Abadi and Luca Cardelli. 1996. A Theory of Objects. Springer,

Berlin. https://doi.org/10.1007/978-1-4419-8598-9
[3] Reza Ahmadi, K. Rustan M. Leino, and Jyrki Nummenmaa. 2015. Au-

tomatic verification of Dafny programs with traits. In Proceedings of
the 17th Workshop on Formal Techniques for Java-like Programs, FTfJP
2015, Prague, Czech Republic, July 7, 2015, Rosemary Monahan (Ed.).

ACM, New York, 4:1–4:5. https://doi.org/10.1145/2786536.2786542
[4] Gerald Aigner and Urs Hölzle. 1996. Eliminating Virtual Function Calls

in C++ Programs. In ECOOP’96 - Object-Oriented Programming, 10th
European Conference, Linz, Austria, July 8-12, 1996, Proceedings (Lecture
Notes in Computer Science, Vol. 1098), Pierre Cointe (Ed.). Springer,

Berlin, 142–166. https://doi.org/10.1007/BFb0053060
[5] Konrad Anton and Peter Thiemann. 2010. Typing Coroutines. In

Trends in Functional Programming - 11th International Symposium,
TFP 2010, Norman, OK, USA, May 17-19, 2010. Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 6546), Rex L. Page, Zoltán

Horváth, and Viktória Zsók (Eds.). Springer, Berlin, 16–30. https:
//doi.org/10.1007/978-3-642-22941-1_2

[6] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and RoelWuyts.

2008. Stateful traits and their formalization. Computer Languages,
Systems and Structures 34, 2-3 (2008), 83–108. https://doi.org/10.1016/
j.cl.2007.05.003

[7] Gavin M. Bierman, Martín Abadi, and Mads Torgersen. 2014. Under-

standing TypeScript. In ECOOP 2014 - Object-Oriented Programming -
28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings (Lecture Notes in Computer Science, Vol. 8586), Richard E.

Jones (Ed.). Springer, Berlin, 257–281. https://doi.org/10.1007/978-3-
662-44202-9_11

[8] Gavin M. Bierman, Matthew J. Parkinson, and Andrew M. Pitts. 2003.

MJ: An imperative core calculus for Java and Java with effects. Technical
Report. University of Cambridge, Computer Laboratory.

[9] Gilad Bracha and William R. Cook. 1990. Mixin-based Inheritance. In

Conference on Object-Oriented Programming Systems, Languages, and
Applications / European Conference on Object-Oriented Programming
(OOPSLA/ECOOP), Ottawa, Canada, October 21-25, 1990, Proceedings,
Akinori Yonezawa (Ed.). ACM, New York, 303–311. https://doi.org/10.
1145/97945.97982

[10] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan Eifrig,

Scott F. Smith, Valery Trifonov, Gary T. Leavens, and Benjamin C.

Pierce. 1995. On Binary Methods. TAPOS 1, 3 (1995), 221–242.
[11] Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data

Abstraction, and Polymorphism. Comput. Surveys 17, 4 (1985), 471–522.
https://doi.org/10.1145/6041.6042

[12] Elias Castegren and Tobias Wrigstad. 2018. OOlong: an extensible

concurrent object calculus. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13,
2018. ACM, New York, 1022–1029. https://doi.org/10.1145/3167132.
3167243

[13] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D. Millstein.

2000. MultiJava: modular open classes and symmetricmultiple dispatch

for Java. In Proceedings of the 2000 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications (OOPSLA
2000), Minneapolis, Minnesota, USA, October 15-19, 2000, Mary Beth

Rosson and Doug Lea (Eds.). ACM, New York, 130–145. https://doi.
org/10.1145/353171.353181

[14] Karl Crary, Stephanie Weirich, and J. Gregory Morrisett. 2002. In-

tensional polymorphism in type-erasure semantics. Journal of Func-
tional Programming 12, 6 (2002), 567–600. https://doi.org/10.1017/
S0956796801004282

[15] Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Oder-

sky. 2006. A Core Calculus for Scala Type Checking. In Mathemat-
ical Foundations of Computer Science 2006, 31st International Sympo-
sium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006,
Proceedings (Lecture Notes in Computer Science, Vol. 4162), Rastislav
Kralovic and Pawel Urzyczyn (Eds.). Springer, Berlin, 1–23. https:
//doi.org/10.1007/11821069_1

[16] Tom Van Cutsem, Alexandre Bergel, Stéphane Ducasse, and Wolf-

gang De Meuter. 2009. Adding State and Visibility Control to Traits

Using Lexical Nesting. In ECOOP 2009 - Object-Oriented Programming,
23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings
(Lecture Notes in Computer Science, Vol. 5653), Sophia Drossopoulou
(Ed.). Springer, Berlin, 220–243. https://doi.org/10.1007/978-3-642-
03013-0_11

[17] Ferruccio Damiani, Johan Dovland, Einar Broch Johnsen, and Ina

Schaefer. 2014. Verifying traits: an incremental proof system for fine-

grained reuse. Formal Asp. Comput. 26, 4 (2014), 761–793. https:
//doi.org/10.1007/s00165-013-0278-3

[18] Ana Lúcia de Moura and Roberto Ierusalimschy. 2009. Revisiting

coroutines. ACM Transactions on Programming Languages and Systems
31, 2 (2009), 6:1–6:31. https://doi.org/10.1145/1462166.1462167

[19] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts,

and Andrew P. Black. 2006. Traits: A mechanism for fine-grained

reuse. ACM Transactions on Programming Languages and Systems 28,
2 (2006), 331–388. https://doi.org/10.1145/1119479.1119483

[20] Kathleen Fisher and John Reppy. 2003. Statically Typed Traits. Techni-
cal Report. AT&T Labs.

[21] Paola Giannini, Marco Servetto, and Elena Zucca. 2018. A Syntactic

Model of Mutation and Aliasing, In Proceedings of the 12th Workshop

on Developments in Computational Models and 9th Workshop on

Intersection Types and Related Systems, DCM/ITRS 2018, Oxford, UK,

8th July 2018, Michele Pagani and Sandra Alves (Eds.). Electronic
Proceedings in Theoretical Computer Science 293, 39–55. https://doi.
org/10.4204/EPTCS.293.4

[22] Robert Griesemer, Raymond Hu, Wen Kokke, Julien Lange, Ian Lance

Taylor, Bernardo Toninho, Philip Wadler, and Nobuko Yoshida. 2020.

Featherweight Go. CoRR abs/2005.11710 (2020). arXiv:2005.11710

https://arxiv.org/abs/2005.11710
[23] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Feath-

erweight Java: a minimal core calculus for Java and GJ. ACM Trans-
actions on Programming Languages and Systems 23, 3 (2001), 396–450.
https://doi.org/10.1145/503502.503505

[24] Hamish Knight. 2020. The dynamic nature of a protocol’s Self type

isn’t checked when equated with another associated type. https://
bugs.swift.org/browse/SR-10713. 2020 (Accessed on July 22, 2020).

[25] Chris Lattner. 2020. Swift Concurrency Manifesto. https://gist.github.
com/lattner/31ed37682ef1576b16bca1432ea9f782. 2020 (Accessed on

July 22, 2020).

[26] Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational

semantics. Information and Computation 207, 2 (2009), 284–304. https:
//doi.org/10.1016/j.ic.2007.12.004

[27] Luigi Liquori and Arnaud Spiwack. 2008. Extending FeatherTrait

Java with Interfaces. Theor. Comput. Sci. 398, 1-3 (2008), 243–260.

https://doi.org/10.1016/j.tcs.2008.01.051
[28] Luigi Liquori and Arnaud Spiwack. 2008. FeatherTrait: A modest

extension of Featherweight Java. ACM Transactions on Programming
Languages and Systems 30, 2 (2008), 11:1–11:32. https://doi.org/10.
1145/1330017.1330022

[29] Barbara Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of

Subtyping. ACM Transactions on Programming Languages and Systems
16, 6 (1994), 1811–1841. https://doi.org/10.1145/197320.197383

[30] Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and

Nicholas Robert Cameron. 2012. Encoding Featherweight Java with

https://doi.org/10.1016/0167-6423(95)00010-0
https://doi.org/10.1007/978-1-4419-8598-9
https://doi.org/10.1145/2786536.2786542
https://doi.org/10.1007/BFb0053060
https://doi.org/10.1007/978-3-642-22941-1_2
https://doi.org/10.1007/978-3-642-22941-1_2
https://doi.org/10.1016/j.cl.2007.05.003
https://doi.org/10.1016/j.cl.2007.05.003
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/97945.97982
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/3167132.3167243
https://doi.org/10.1145/3167132.3167243
https://doi.org/10.1145/353171.353181
https://doi.org/10.1145/353171.353181
https://doi.org/10.1017/S0956796801004282
https://doi.org/10.1017/S0956796801004282
https://doi.org/10.1007/11821069_1
https://doi.org/10.1007/11821069_1
https://doi.org/10.1007/978-3-642-03013-0_11
https://doi.org/10.1007/978-3-642-03013-0_11
https://doi.org/10.1007/s00165-013-0278-3
https://doi.org/10.1007/s00165-013-0278-3
https://doi.org/10.1145/1462166.1462167
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.4204/EPTCS.293.4
https://doi.org/10.4204/EPTCS.293.4
https://arxiv.org/abs/2005.11710
https://arxiv.org/abs/2005.11710
https://doi.org/10.1145/503502.503505
https://bugs.swift.org/browse/SR-10713
https://bugs.swift.org/browse/SR-10713
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://gist.github.com/lattner/31ed37682ef1576b16bca1432ea9f782
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1016/j.ic.2007.12.004
https://doi.org/10.1016/j.tcs.2008.01.051
https://doi.org/10.1145/1330017.1330022
https://doi.org/10.1145/1330017.1330022
https://doi.org/10.1145/197320.197383

Featherweight Swift: A Core Calculus for Swift’s Type System SLE ’20, November 16–17, 2020, Virtual, USA

assignment and immutability using the Coq proof assistant. In Pro-
ceedings of the 14th Workshop on Formal Techniques for Java-like Pro-
grams, FTfJP 2012, Beijing, China, June 12, 2012. ACM, New York, 11–19.

https://doi.org/10.1145/2318202.2318206
[31] John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have

Existential Type. ACM Transactions on Programming Languages and
Systems 10, 3 (1988), 470–502. https://doi.org/10.1145/44501.45065

[32] Dmitri Nesteruk. 2018. Maybe Monad. Apress, Berkeley, CA, 305–308.
https://doi.org/10.1007/978-1-4842-3603-1_25

[33] Oscar Nierstrasz, Stéphane Ducasse, and Nathanael Schärli. 2006.

Flattening Traits. Journal of Object Technology 5, 4 (2006), 129–148.

https://doi.org/10.5381/jot.2006.5.4.a4
[34] Johan Östlund and Tobias Wrigstad. 2010. Welterweight Java. In

Objects, Models, Components, Patterns, 48th International Conference,
TOOLS 2010, Málaga, Spain, June 28 - July 2, 2010. Proceedings. Springer,
Berlin, 97–116. https://doi.org/10.1007/978-3-642-13953-6_6

[35] Dimitri Racordon. 2019. Revisiting Memory Assignment Semantics in
Imperative Programming Languages. Ph.D. Dissertation. University of

Geneva, Geneva, Switzerland.

[36] Dimitri Racordon. 2020. Bad downcast to Self not caught at runtime.

https://bugs.swift.org/browse/SR-11818. 2020 (Accessed on July 22,

2020).

[37] Dimitri Racordon. 2020. Crash when attempting to assign an unbound

method from a protocol. https://bugs.swift.org/browse/SR-11769. 2020

(Accessed on July 22, 2020).

[38] Aminata Sabane, Yann-Gaël Guéhéneuc, Venera Arnaoudova, and Giu-

liano Antoniol. 2017. Fragile base-class problem, problem? Empirical
Software Engineering 22, 5 (2017), 2612–2657. https://doi.org/10.1007/
s10664-016-9448-2

[39] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P.

Black. 2003. Traits: Composable Units of Behaviour. In ECOOP 2003 -
Object-Oriented Programming, 17th European Conference, Darmstadt,
Germany, July 21-25, 2003, Proceedings. Springer, Berlin, 248–274. https:
//doi.org/10.1007/978-3-540-45070-2_12

[40] Charles Smith and Sophia Drossopoulou. 2005. Chai: Traits for Java-
Like Languages. In ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 25-29, 2005, Proceedings (Lec-
ture Notes in Computer Science, Vol. 3586), Andrew P. Black (Ed.).

Springer, Berlin, 453–478. https://doi.org/10.1007/11531142_20
[41] Stefan Wehr and Peter Thiemann. 2011. JavaGI: The Interaction of

Type Classes with Interfaces and Inheritance. ACM Transactions on
Programming Languages and Systems 33, 4 (2011), 12:1–12:83. https:
//doi.org/10.1145/1985342.1985343

[42] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach

to Type Soundness. Information and Computation 115, 1 (1994), 38–94.

https://doi.org/10.1006/inco.1994.1093

https://doi.org/10.1145/2318202.2318206
https://doi.org/10.1145/44501.45065
https://doi.org/10.1007/978-1-4842-3603-1_25
https://doi.org/10.5381/jot.2006.5.4.a4
https://doi.org/10.1007/978-3-642-13953-6_6
https://bugs.swift.org/browse/SR-11818
https://bugs.swift.org/browse/SR-11769
https://doi.org/10.1007/s10664-016-9448-2
https://doi.org/10.1007/s10664-016-9448-2
https://doi.org/10.1007/978-3-540-45070-2_12
https://doi.org/10.1007/978-3-540-45070-2_12
https://doi.org/10.1007/11531142_20
https://doi.org/10.1145/1985342.1985343
https://doi.org/10.1145/1985342.1985343
https://doi.org/10.1006/inco.1994.1093

	Abstract
	1 Introduction
	2 Swift's Type System in a Nutshell
	3 Featherweight Swift
	3.1 Formal Syntax
	3.2 Typing Semantics
	3.3 Operational Semantics
	3.4 Properties

	4 Reasoning About Swift
	5 Related Work
	6 Conclusion and Future Directions
	Acknowledgments
	References

