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Abstract. Real-time system design involves proving the schedulability
of a set of tasks with hard timing and other constraints that should run
on one or several cores. When those requirements are known at design
time, it is possible to compute a fixed scheduling of tasks before deploy-
ment. This approach avoids the overhead induced by an online scheduler
and allows the designer to verify the schedulability of the taskset de-
sign under normal and degraded conditions, such as core failures. In this
context, we propose to solve the schedulability problem as a state space
exploration problem. We represent the schedulings as partial functions
that map each task to a core and a point in time. Partial functions can
be efficiently encoded using a new variant of decision diagrams, called
Map-Family Decision Diagrams (MFDDs). Our setting allows first to cre-
ate the MFDD of all possible schedulings and then apply homomorphic
operations directly on it, in order to obtain the schedulings that respect
the constraints of the taskset.
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1 Introduction

Multi-core architectures have become ubiquitous, as an answer for the expo-
nential growth in computer performance required by modern applications. This
observation obviously applies to small-scale real-time and cyber-physical systems
as well. Unlike more general applications, these systems often have to run tasks
with hard deadlines, to interact with their hardware components. It follows that
one of their essential requirements is to guarantee that they are able to perform
all their tasks on time, by providing a scheduling that assigns each task to a spe-
cific core at a specific point in time. Such a scheduling can be built along with
the execution of the system, according to some heuristics [11], or pre-computed
statically to avoid the overhead induced by an online scheduler. An additional
advantage of the latter approach is that it allows to study the system’s perfor-
mance under various scenarios, not only to make sure it is actually capable of
running its workload, but also to check whether it can be resilient to hardware
faults (e.g. the failure of one of its cores).
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Typically, each task has timing constraints, such as a release time, after which
it can be executed, a worst-case execution time, which is the most pessimistic
assumption for the time it takes to complete, and a deadline for its completion.
Other non-timing constraints may exist and should also be taken into account in
the scheduling. Common constraints include precedence, which indicates that a
predecessor task has to be completed before a successor task starts. Schedulabil-
ity analysis verifies that a feasible scheduling exists for a given taskset respecting
all the timing, precedence, and other constraints. Roughly speaking, it suffices
to check that all tasks will complete before their deadline.

Several analysis tools have been used to solve the multicore schedulability
problem. For example, utilization bound checks [12] have been proposed for test-
ing the schedulability of a taskset analytically. Though these checks are efficient,
they inherently are pessimistic, often rejecting valid tasksets. Furthermore, they
cannot handle multiple constraints over tasks. Other tools have been developed
to analyze tasksets with complex constraints [14], and rely on simulation to
check schedulability. However, simulation is known to cover only a sample of
possible scenarios, thus it can lead to falsely feasible schedulings, which is not
acceptable for critical real-time systems.

The aforementioned approaches in the literature target a specific variation of
the problem, such as the existence of task parallelism or interference among tasks
that cause delays. In this paper, we opt for a different, more generic approach,
which relies on model checking. Unlike simulation, model checking explores the
entire space of possible states. In our case, this translates into an enumeration
of all possible schedulings, that we can filter to remove specific instances for
which the constraints are not satisfied. In practice, such an approach is often
intractable due to the state-space explosion problem. However, we mitigate this
issue with decision diagrams, a data structure that encodes large sets of data into
a memory-efficient representation by exploiting the similarities between each el-
ement. Our work is related to the technique proposed in [17]. The authors solve
the schedulability problem as a state-space exploration using Data Decision Di-
agrams [6], which encode sets of variable assignments. We use a slightly different
flavor of decision diagrams, called Map-Family Decision Diagrams (MFDDs),
that encode sets of partial functions, and allow for a more direct translation of
the problem. Each constraint is represented as a homomorphic operation that is
applied directly on the encoded form, in a fashion reminiscent to Fourier filters.

This paper offers the following contributions:

1. An exhaustive search methodology for the multi-core schedulability prob-
lem, based on inductive homomorphisms, i.e. structure-preserving transfor-
mations, that compute all solutions at once.

2. A compact, human-readable representation of the solution set, which can be
easily inspected during design and efficiently stored as a database of pre-
computed schedulings in production.

3. A refinement of the seminal work proposed in [17] that fixes a flaw in the
authors’ method, offers a simpler way to define filters and supports additional
constraints, such as transient core failures.
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2 Related Work

In this section, we include works related to the offline computation of global mul-
ticore scheduling for time-triggered tasks. In particular, we discuss approaches
that employ model checking, linear programming and decision diagrams.

Model checking has been a reliable tool for schedulability verification. Its
inputs are a model of the system (e.g., tasks, scheduler) with finite reachable
states and a set of properties that characterize the valid reachable states, e.g.,
states where no task has missed its deadline. Properties may be expressed as
temporal logic formulae or be designated as error states in the model. An ex-
haustive search explores the reachable states of the system model and checks if
properties hold. Violating states are returned as counter-example, which can be
used to refine the model.

In [1], periodic tasksets are modeled as timed automata and schedulability
holds if a certain state can be reached within an expected time window. In a
similar approach [8], each task and its constraints are modeled as a timed au-
tomaton, on which it is verified that the task can meet its deadline. Interactions
between tasks are modeled by composing their corresponding automata. Another
work [18] for self-suspending tasks models each task as as a set of segments,
the end of which corresponds to a suspension point. Generally, model checking
can model complex factors on schedulability, such as stochastic execution times.
However, it is computationally expensive and therefore only able to handle small
tasksets. Moreover, the generated solutions are independent to each other and
can not be narrowed down efficiently to account for additional task constraints or
be compactly stored. In [7], statistical model checking is proposed to reduce the
undecidability of symbolic (i.e., more efficient but over-approximating) model
checking for the scheduleability of tasks with uncertain response and blocking
times. In this setting, the system is simulated for a finite number of runs to
test the satisfaction probability of a given property. Tasksets that were found
unschedulable by symbolic model checking can be probed for useful information,
such as the probability of a certain violation, or bounds on blocking times. Other
timed automata extensions, such as Priced Automata [2], have been suggested
to efficiently identify subsets of feasible schedulings.

Other approaches to schedulability rely on linear programming. In [16], schedu-
lability for multi/many-core architectures is studied for three different platform
architectures using integer linear programming (ILP). Cache conscious real-time
schedulability using ILP has also been the target in [15]. In their setting, they
assume that all tasks are connected by the dependency relation, which reduces
candidate solutions, compared to our setting that does not assume that. Linear
programming uses heuristics algorithms to efficiently compute schedulings close
to the optimal ones, but it does not return all schedulings.

Decision diagrams have been proposed for representing and solving schedu-
lability In [10] the authors find an optimal schedule for tasks with arbitrary
execution times using a breath firth search on a Binary Decision Diagram. How-
ever, their representation considers uniform cores, while our model can be also
applied to non-uniform cores, e.g., when not all cores are suitable for every task.
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In another work [5], the authors proposed searching for the optimal single-core
scheduling, using a Multi-Valued Decision Diagram that represents an overap-
proximated set of possible schedulings. As opposed to theirs, our method handles
many cores and computes all feasible solutions.

3 Background

Decision diagrams were originally proposed as a data structure to represent
and manipulate Boolean functions [4]. Since then, numerous variants have been
developed that suit other domains (see [13] for a survey). Nonetheless, all of them
share the same principle; they encode each element as a path in a finite directed
acyclic graph (DAG), from its root to a terminal node (i.e. a node without
successors). Non-terminal nodes are labeled with a variable, and arcs are labeled
with the value assigned to this variable. Our approach uses one specific variant
of decision diagrams, named MFDDs, which we developed to encode sets of
partial functions f : A → B, where A and B are any sets and dom(f) ⊆ A
is finite. Partial functions typically correspond to dictionaries or mappings in
regular programming languages, and are well-suited to encode various kinds of
data structures. For instance, a list can be seen as a partial function that maps
numerical indices to the list’s elements.

In a MFDD that encodes a set of partial functions A→ B, all non-terminal
nodes are labeled with a value from A, while arcs are labeled with a value from
B ∪ {ε}, where ε represents the absence of any value. A diagram may have up
to two terminal nodes, labeled with > and ⊥, representing the acceptance of a
path from the root and its rejection, respectively. Hence, a function is encoded
as a path from the root to the accepting terminal node.
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Fig. 1: Example of a (non-canonical) MFDD

Example 1. Figure 1 depicts a decision diagram that encodes a set of seven
different partial functions from a domain A = {a, b, c, d, e} to a codomain B ⊆ N.
Circles denote domain values, while squares denote terminal nodes. Dashed edges
represent ε-arcs, while solid ones are labeled with a number. The path highlighted



Solving Schedulability as a Search Space Problem with Decision Diagrams 5

with thick, green arrows encodes a function f such that dom(f) = {b, c} (i.e., it
is undefined for any other value in A) and f(b) = 3, f(c) = 1.

Any path that leads to the rejecting terminal (i.e., ⊥) is said rejected and
denotes a function that is not present in the encoded set. If some domain value v
is absent from a path, then it is assumed that the corresponding function is not
defined for v. All functions that cannot be associated with any accepted path in
the diagram are considered absent from the encoded set. It follows that a given
set of functions can have multiple representations1.

Definition 1 (Map-Family Decision Diagram). Let A and B be a domain
and a codomain set, respectively. The set of Map-Family Decision Diagrams
MA,B that encode families of partial functions A → B is inductively defined as
the minimum set, such that:

– {⊥,>} ∈MA,B are terminal nodes,

– 〈a, s〉 ∈ MA,B is a non-terminal node labeled with a ∈ A, whose successors
are given by the partial function s : B ∪ {ε} →MA,B.

Efficient implementations of decision diagrams rely on representation unique-
ness to share identical sub-graphs, in order to reduce the memory footprint and
cache the result of each homomorphic operation. We provide a canonical rep-
resentation of MFDDs by applying some constraints. Firstly, we require that
domain A be associated with a total order, and that all successors of a node be
either a terminal node or a node labeled with a greater value. This is the case
in the MFDD of Figure 1, assuming that the members in A are ordered lexico-
graphically. Secondly, we require that all non-terminal nodes have at least one
arc not labeled with ε. Nodes that do not satisfy this constraint can be safely
removed, as they do not carry any information. For instance, node b at the bot-
tom path of Figure 1 is redundant. Finally, we require that all rejected paths
be removed. Recall that functions which cannot be associated with an accepted
path are assumed to be rejected (i.e. absent from the encoded set). Hence, re-
jected paths, like the two top paths of Figure 1, do not add any information.
Note that we cannot get rid of the rejecting terminal itself, as it is necessary to
represent the empty set of functions. The canonical form of the the MFDD from
Figure 1 is shown in Figure 2a.

Definition 2 (Canonicity). Let A be a domain set with a total order < ⊆
A×A and B be a codomain set. A MFDD d ∈MA,B is canonical if and only if:

– d ∈ {⊥,>} is a terminal node, or

– d = 〈a, s〉 is a non-terminal node such that ∃b ∈ dom(s), b 6= ε and ∀b ∈
dom(s), s(b) ∈M{x∈A|a<x},B − {⊥}.

1 Incidentally, as MFDDs are finite graphs, it follows that all encoded functions f
have a finite domain dom(f) ⊆ A, represented by the non-terminal nodes along an
accepting path, even if A is infinite.
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Let 〈a, s〉 be a non-terminal node. The first canonicity constraint is enforced
by s(b) ∈ M{x∈A|a<x},B , which prescribes that successor nodes be labeled with
greater domain values. The second constraint is enforced by ∃b ∈ dom(s), b 6= ε.
Finally, although the third constraint is not enforced explicitly, it is easy to show
that requiring s(b) 6= ⊥ inductively prevents rejected paths to be encoded.
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Fig. 2: Two examples of canonical MFDDs

Example 2. Consider the MFDD shown in Figure 2a. The root node is a tuple
〈a, sa〉, where sa is a function such that dom(sa) = {ε, 1, 2} and sa(ε) = sa(1) =
〈b, sb〉 and sa(2) = 〈d, sd〉. The function sb is defined such that dom(sb) = {ε, 3}
and sb(ε) = > and sb(3) = 〈c, sc〉. Finally, sc (resp. sd) is defined such that
sc(1) = > (resp. sd(3) = >) and is undefined for any other value in B ∪ {ε}.

In addition to their compact representation, another advantage of MFDDs is
that they can be manipulated by the means of homomorphisms. These operations
can modify multiple elements at once, as any alteration of a prefix has a direct
impact on all elements encoded by its suffixes.

Example 3. Suppose we were to remove b from the domain of all partial functions
encoded by the MFDD in Figure 2a. Rather than enumerating all seven instances
to apply the filter, we could define a homomophism that simply removes the node
corresponding to b’s bindings, and rewires its incoming arcs to existing or new
nodes, as shown in Figure 2b. In other words, a homomophism can modify the
domain of all encoded functions by rewriting the decision diagram.

A key property of MFDD homomorphisms is that they preserve set-theoretic
operations, such as union and intersection. More formally, let d1, d2 ∈ MA,B be
two MFDDs, and Φ be a homomorphism, then Φ(d1 ∪ d2) = Φ(d1)∪Φ(d2). This
allows homomorphisms to be rearranged for efficient computations.

4 Methodology

In the context of search based problems, MFDDs present the advantage that they
can be used to both store and compute sets of solutions efficiently. Their compact
representation is able to encode large sets with minimal memory footprint, while
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homomorphisms on map families allows the construction of solutions with a
smaller computational overhead than traditional approaches.

There are two main approaches to use MFDDs in search based problems.
The first consists of exploring the state space of a problem to build its solution
set incrementally, augmenting it with new instances that satisfy the problem’s
constraints as they are found. This process ends when a fixpoint is reached or
if the entire space has been visited. The second technique, more reminiscent of
Answer Set Programming (ASP), proposes to start from a MFDD representing
the entire state space of the problem before filtering out instances that do not
satisfy the problem’s constraints.

The n-queens puzzle is a simple example of a problem that can be solved
with the second approach. The puzzle consists of finding all possible ways that
n different queens can be placed on a n × n chessboard without being able to
attack each other. More formally, let Coln = {a, b, . . .} denote a set of column
identifiers for some n× n chessboard. Similarly, let Rown = {1, 2, . . . , n} denote
row identifiers. Let Cn = Coln × Rown denote the set of coordinates on the
board. Let I ∈ P(Cn) denote a set of coordinates at which queens are placed,
and R denote a relation on coordinates which indicates whether a position can
be reached from another by a queen, according to the rules of chess. (d, 3) ∈ I
indicates for example that a queen lies at row d and column 3 of the board,
and 〈(d, 3), (g, 6)〉 ∈ R, because the position (g, 6) can be reached from (d, 3) by
a queen. A configuration I is said to be a solution to the n-queens puzzle if it
contains exactly n coordinates, and if for all a ∈ I, there is no b ∈ I such that
〈a, b〉 ∈ R. Hence, the set of all solutions S is formally given as:

S = {I | (‖ I ‖= n) ∧ (∀a, b ∈ Cn, a ∈ I ∧ 〈a, b〉 ∈ R⇒ b 6∈ I}

Using MFDDs, one can express the n-queens puzzle as the following algorithm:

1: Sn ← P(Cn)
2: for all a ∈ Cn do
3: Sn ← {I ∈ Sn | a ∈ I ⇒6 ∃b ∈ I, 〈a, b〉 ∈ R}
4: end for
5: Sn ← {I ∈ Sn |‖ I ‖= n}

At line 1, all possible configurations are computed, as the powerset of the
coordinates Cn, and added to the set of candidate solutions Sn. Then, at line 3,
the set of candidate solutions is refined by removing all configurations in which
a queen can attack another. Finally, at line 5, all sets with cardinality other than
n are filtered out, so as to keep in Sn only the actual solutions to the puzzle.

Implementing such an algorithm with MFDDs can be quite efficient, thanks
to the use of homomoprhisms. As mentioned in the previous sections, they allow
to perform filtering directly on the shared structure of a MFDD, therefore mod-
ifying large subsets of the encoded family at once. For instance, in the above
algorithm, the actions performed on Sn operate on each map it contains in par-
allel, without the need to iterate over each one of them separately. In addition,
MFDDs allow the maps in Sn to share nodes, so as to keep the overall represen-
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tation compact. Although a 8× 8 chessboard has roughly 1019 configurations, it
takes only 2.5 KB to store in memory.

5 Multi-Core Schedulability

The multi-core schedulability problem [17] can be viewed as an assignment prob-
lem that consists of verifying whether a set of tasks can be executed on a multi-
core system, with respect to task-specific timing constraints and dependencies
between the tasks. We focus on the most common type of precedence dependen-
cies, where the predecessor must finish before the successor can start.

We define tasks T with associated triples 〈r, c, d〉, where r denotes their re-
lease time, c denotes their worst-case execution time and d denotes their (abso-
lute) deadline. We assume that all tasks can potentially meet their deadline, i.e.,
r+ c ≤ d. A task model M = 〈T, µ,D〉 is a DAG consisting of a set of tasks T as
its vertices, a function µ : T → N3 defining tasks characteristics and a relation
D ⊆ T × T describing direct dependencies between tasks as its edges.

Consider the task model depicted in Figure 3, that features five tasks. Task t0
can be scheduled at time 0, i.e., immediately when it is released, since it has no
dependencies. Tasks t2 and t4 cannot be scheduled at time 0, even though they
have no dependencies, because they are released at times 4 and 8, respectively.
Task t1 depends on both t0 and t2. Hence, it cannot start before they have
completed, even though its release time is earlier. Finally, task t3 depends on t1,
meaning that it also indirectly depends on t0 and t2 (i.e. t1’s dependencies).

t0

〈0, 3, 4〉

t1

〈0, 2, 10〉

t2

〈4, 3, 8〉

t4

〈8, 3, 12〉

t3

〈5, 4, 15〉

Fig. 3: Example of a task model consisting of 5 tasks.

Given a task model M = 〈T, µ,D〉 and a set of cores C, a scheduling is a
partial function s : T → C × N, that assigns a task to a core at a specific time.
Notice that this definition assumes that tasks cannot be preemptively suspended
to execute another task on the same core, effectively meaning that all tasks are
assumed to be executed from beginning to end. A scheduling is feasible if:

– all tasks are scheduled after their dependencies have finished;

– all tasks are scheduled after their release time; and

– the deadlines of all tasks are met.
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Moreover, a scheduling is consistent if there are no tasks scheduled on the same
core at the same time.

Figure 4 illustrates two examples of schedulings for the task model in Fig-
ure 3. Both schedulings are consistent, since tasks do not overlap. However, only
the left one is feasible, since the right one does not satisfy t3’s dependencies.

c0

c1

t0 t2 t1 t3

t4

(a) Feasible and consistent.

c0

c1

t0 t2 t1 t4

t3

(b) Non-feasible but consistent.

Fig. 4: Two examples of schedulings.

Definition 3 (Schedulability problem). Given a task model and a set of
cores, the schedulability problem consists of determining whether there exists at
least one feasible and consistent scheduling.

5.1 Schedulings as Decision Diagrams

Recall that MFDDs encode sets of partial applications. Since a scheduling is a
partial function mapping each task to a core and a start time, encoding a set
of schedulings with a MFDD is straightforward: tasks are represented by non-
terminal nodes, whereas the start time and the core on which they are scheduled
label the arcs. There are however two issues to address, which relate to the same
limitation of decision diagrams. Because they are DAGs, extracting information
from suffixes is usually challenging. Not only it initiates recursive explorations,
which are costly on large diagrams, it also requires complex transformations to
preserve the consistency of the prefix that leads to a particular node, when a par-
ent is mutated. Such operations are usually avoided, in favor of homomorphisms
that depend on values which are read on a prefix to a given node.

This limitation impacts the initial construction of the MFDD. Scheduling a
task on a given core necessitates to know when the core is next available, which
is an information that depends on the suffix of a given path. One way to tackle
this issue is to lift the necessary information at the root of the MFDD. That
way, we can first collect the next available time for a given core, before inserting
a new mapping and schedule a new task on it.

The second issue relates to the handling of task dependencies. In order to
decide if a scheduling is feasible, we need to determine whether each task is
scheduled after all its dependencies. Consequently, the order in which tasks ap-
pear along a path in the MFDD must be chosen carefully, so that dependencies
are laid out deeper. That way, we can first dive to the nodes representing a
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specific task, and then remove all suffixes for which its dependencies are either
not scheduled or finish too late.

Figure 5 represents the two schedulings depicted in Figure 4. The top path
(resp. bottom path) corresponds to the left (resp. right) scheduling. The shared
suffix shows how similarties between different schedulings can be exploited to
compact the representation of a large set of possibilities.

c0

c1

c1

t4

t4

t3

t3

t1 t2 t0 >

13

11 c1, 8

c0, 9

12 12 c0, 9 c1, 8

c0, 7 c0, 4 c0, 0

Fig. 5: Two schedulings represented as a MFDD.

Note that the order in which the tasks are laid out has a direct impact on
sharing. Despite the constraint we mentioned earlier, namely that tasks should
appear before their dependencies, there is a lot of freedom to pick this order.
This is generally a difficult problem in the context of decision diagram optimiza-
tions [3, Chapter 7]. There are nonetheless some intuitions about what consti-
tutes a good order. Indeed, sharing is most likely to occur on the bottom of
the MFDD. Thus, tasks that are more loosely constrained, in terms of depen-
dencies, release times and deadlines, should appear closer to the top. That way,
more tightly constrained tasks, which will intuitively have less possible different
assignments, will be found in the suffixes of more nodes.

The reader will notice that our encoding does not handle sporadic tasks.
Such tasks are common in real-time systems, and corresponds to actions that
must be executed periodically. As we chose to formalize schedulings in the form
of partial functions T → C ×N , representing sporadic tasks would require T to
be an infinite set. However, our definition of a task model is sufficient to describe
a time window, in which occurences of sporadic tasks can be enumerated. As a
result, any feasible and consistent scheduling can represent one time window in
the unbounded behavior of the system, consisting of repeated time windows.

5.2 Computing Schedulings

We now describe the computation of the set of all possible schedulings by
a MFDD of MT∪C,N∪(C×N). In a nutshell, the method consists of iteratively
scheduling one task, at one possible time slot, in all schedulings that have been
computed so far. This produces a new subset of schedulings at each iteration,
that is merged with the original set, until a fixed point is eventually reached.
The process is guaranteed to terminate, as we can assume that all tasks have a
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finite deadline. This limitation is consistent with the idea of using task models
as a way to represent slices of a system’s behavior. It follows that there is a finite
number of time slots at which the algorithm should attempt to schedule a task.

The following pseudo-code describes our algorithm:

1: S ← enc({[c 7→ 0 | c ∈ C]})
2: S′ ← ⊥
3: while S 6≡ S′ do
4: S′ ← S
5: for all 〈t, c〉 ∈ T × C do
6: for all tr ≤ i ≤ td − tc do
7: S ← S ∪ (sch(t, c, i) ◦ fltr(t))(S)
8: end for
9: end for

10: end while
11: S ← check(S)

c0

c1 c1

t0

>

0 3

0

0

c0, 0

c0

c1 c1

t0

>

0 3

0

0

c0, 0

c0

c1

t0

>

4

0

c0, 1

c0

c1 c1c1

t0 t0

>

0 34

0

00

c0, 1 c0, 0

fltr(t0) sch(t0, c0, 1) S ← S ∪ . . .

Fig. 6: One iteration of the scheduling construction algorithm’s the inner loop

Line 1 creates a MFDD representing a singleton set which contains a function
that maps all cores to 0 (i.e., their next available time). Then, most of the work is
carried out at line 7, where a task’s mapping (on a given core, at a specific time)
is added to all schedulings. This process is illustrated for one single iteration in
Figure 6. Assume S to be the MFDD depicted on the left, which encodes the
empty scheduling, as well as one mapping in which a task t0 is being scheduled
on core c0. The first step consists of filtering out the mappings for which the
task is already defined, with the fltr homomorphism, producing the MFDD in
which the corresponding paths have been grayed out. The remaining mappings
are then fed into the sch morphism, that actually inserts the task at the correct
position in all paths. Finally, we compute the union of the resulting MFDD with
S, effectively merging all new schedulings into the previous ones.
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Note that task dependencies are not taken into consideration until line 11,
where a third morphism check removes all non-feasible schedulings. This final
step boils down to another filter that removes the paths that do not schedule all
tasks, as well as those in which task constraints are not satisfied.

6 Experimental Results

We implemented our schedulability analysis technique with DDKit, a library to
manipulate MFDDs. We tested it on several randomly generated task models of
various sizes, for a 2-cores, a 3-cores and a 4-cores architecture. Our implemen-
tation closely follows the algorithm presented in Section 5.2. All tests were ran
on a intel i9 at 2.3 GHz. Sources as well as the randomly generated datasets we
used are available on GitHub2, and distributed under the MIT license.

Test runs showed that our technique can quickly determine if a given model
is not schedulable due to timing constraints alone. This is because schedulings
are built incrementally, by adding a new unscheduled task at each pass. Paths in
which a task is not schedulable due to timing constraints (i.e. its deadline cannot
be met) are cut from the MFDD as soon as they are detected, actually reducing
its size. As a result, subgraphs that were only reachable from such paths need no
longer to be explored for scheduling the remaining tasks. This is akin to pruning
in a classical backtracking algorithm. Filtering out dependency constraints is
also efficient, and amounts to about only 5% of the total execution time. This
can be explained by our encoding strategy. As dependent tasks tend to appear
closer to the MFDD’s root, filtering out a path in which its dependency is not
scheduled removes a lot of subgraphs at once, and with them, a lot of possible
solutions that no longer need to be explored. Furthermore, this mechanism deals
gracefully with chains of dependencies.

Results are summarized in Figure 7. As tasksets are generated randomly,
computation times may vary from one task model to the other. Hence, we aver-
aged all results on three different test cases, for each size of task model. We also
removed models for which no schedulings can be found, as those are significantly
faster to process. We measured the running time as well as the total memory
consumed throughout the execution. Runs whose computation exceeded twelve
hours were aborted, explaining missing results for both the 3-cores and 4-cores
architectures.

As we can see, our algorithm scales much better with the number of tasks
than with the number of cores. Although it took on average 4 minutes and
a half to compute 150’000 solutions for a model consisting of 5 tasks on a 4-
cores architecture, we were able to compute nearly 40 times more schedulings
(i.e., roughly 5.5 millions) for a model of 10 tasks on a 2 core-architecture. This
asymmetry can be explained by the way operations are optimized on decision
diagrams. Recall that outgoing arcs of nodes that represent tasks are labeled
with a pair denoting a core and a time. Increasing the number of cores increases

2 https://github.com/kyouko-taiga/Schedulability
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Fig. 7: Experimental results

the size of the domain from which these labels will be picked, which leads to
reducing the possibility of sharing identical subgraphs. As a result, applying a
homomorphism on the diagram is more expensive, as caching gets less efficient.

This scaling problem could be tackled by the means of anonymization [9].
Anonymization is an optimization technique for decision diagrams which aims
to reduce the properties that make two configurations distinguishable, so as to
leverage caching more aggressively. In our case, the specific core on which a task
is scheduled could be forgotten, so that arcs would be labeled only by the start
time. Obviously, this loss of information would make the encoded schedulings
less precise, as we could only know when a task is scheduled, and not where.
However, this would be sufficient to determine the number of solutions (if any)
there exists to schedule a task model on a given architecture.

Our approach is a refinement of another similar work [17], which purposes
the use of Data Decision Diagrams for computing sets of schedulings. Our tech-
nique brings a number of improvements. Firstly, we are able to compute all
possible schedulings for a given time window, including those in which some
cores may be idling (i.e., inactive in a period of time), which was suggested as
future work in [17]. Hence, we are able to check for schedulability in the presence
of transient errors, whereas the original method can only model permanent core
failures. This refinement also solves an issue related to the handling of dependen-
cies. Since their technique is not able to model idling, it is not able to schedule a
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task after its dependencies have been executed, on any core whose next available
time precedes the completion of the dependency. Secondly, experimental results
show that our approach is roughly twice as efficient in terms of computation
time. We explain this disparity by the fact that we filter for dependency incon-
sistencies after having built the set of all possible schedulings, rather than after
the addition of a new task. This alleviates the filtering effort and maintains a
smaller MFDD during the task addition phase.

7 Conclusion

We presented a transformation of the multi-core schedulability problem as a
state space exploration problem, in a style reminiscent to model checking. We
showed how to build the set of all possible schedulings of a given taskset with
Map-Family Decision Diagrams, a variant of decision diagrams that we designed
to encode large sets of partial functions into a compact representation. We used
homomoprhic operations, in particular filters, to manipulate the set of schedul-
ings and illustrated how to use these operations to analyze solution sets.

We envision future works along two main axes. The first one is to refine our
encoding, so as to improve on the performance of our algorithm. A promising lead
in this direction is to find better heuristic for task ordering, to maximize sharing.
Another idea would be to exploit symmetries between schedulings, so as to prune
the state space exploration. Finally, as mentioned in Section 6, anonymization
could also be leveraged for specific analysis, for instance, to more quickly identify
non-schedulable models [9]. The second axis for futre works relates to the de-
velopment of a framework to analyze scheduling sets. We already demonstrated
that filtering homomorphisms can be efficiently leveraged to exclude schedulings
based on dependency constraints. Other kind of constraints could be translated
into filters as well, and applied on solution sets to check schedulability under
more elaborate constraints. For instance, one could exclude schedulings in which
two given tasks are not executed at the same time, on different cores, so as to
account for possible communications.
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