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Abstract
Anzen is a multi-paradigm programming language that aims
to provide explicit and controllable assignment semantics. It
is based on the observation that abstractions over memory
management and data representation, as commonly adopted
by contemporary programming languages, often transpire
relics of the underlying memory model and lead to confusing
assignment semantics in the presence of aliases. In response,
Anzen’s goal is to offer a modern approach to programming,
built on a sound and unambiguous semantics.

This paper describes the implementation of a compiler for
Anzen. Our implementation transpiles sources to an inter-
mediate language inspired by the LLVM IR, designed to ease
further analysis on Anzen’s statements. This intermediate
representation is then consumed by a register-based virtual
machine. We present the Anzen compiler’s architecture, in-
troduce its intermediate language and describe the latter’s
evaluation. Our work aims to set a reference implementation
for future developments and extensions of the language.

CCS Concepts • Software and its engineering→ Inter-
preters; Runtime environments; Imperative languages;
Data types and structures.

Keywords intermediate language, virtual machine, imper-
ative languages, assignment, memory management
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1 Introduction
Programming languages have become an ubiquitous tool,
applied in a vast array of industrial and academic domains. In
order to improve usability needs in these numerous use cases,
modern programming languages typically sit at a very high
abstraction level, so as to mask the intricacies of their compu-
tational model. Although the notions onwhich programming
languages abstraction can vary widely, it is now common to
hide memory management and data representation. If the
benefits of such a practice are undeniable, relics of the un-
derlying memory model still transpire in most programming
languages, leading to confusing assignment semantics.
Based on this observation, we developed Anzen [17], a

multi-paradigm programming language that aims to dispel
such a confusion. Rather than overloading a single assign-
ment operator with differentmeanings, Anzen provides three
distinct assignment primitives with unequivocal semantics.
One creates aliases, another performs deep copies and the
last deals with uniqueness. The language further supports
high-level concepts, such as generic types and higher-order
functions, and offers capability-based [3] memory and alias-
ing control mechanisms that are enforced by its runtime.

This paper describes the implementation of a compiler for
Anzen. Its architecture is schematized in Figure 1. We iden-
tify two main components. The front-end consumes Anzen
sources with a recursive descent parser, directly producing
an abstract syntax tree (AST). Information about the con-
crete syntax (e.g. line and column numbers) is kept in the
form of metadata, and used to provide context to the error
messages. The AST then undergoes semantic analysis, which
essentially handles name binding and type inference. The
back-end transforms type checked ASTs into an intermediate
language, called Anzen Intermediate Representation (AIR),
which is this paper’s main contribution. AIR is a low-level
assembly-like instruction set reminiscent to LLVM IR [12],
but that preserves Anzen’s assignment operators, together
with a handful of high-level concepts, such as higher-order
functions. AIR exposes how references (a.k.a. pointers) are
manipulated by every instruction explicitly. Consequently,
it is easier to interpret than its high-level counterpart, and
more suitable to perform language-specific analysis and code
optimization. It is consumed by a register-based virtual ma-
chine [9], effectively interpreting Anzen programs.

https://doi.org/10.1145/3358504.3361227
https://doi.org/10.1145/3358504.3361227
https://doi.org/10.1145/3358504.3361227
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Figure 1. Architecture of the Anzen compiler.

2 Anzen in a Nutshell
This section briefly introduces Anzen, a multi-paradigm pro-
gramming language, leaning towards imperative program-
ming and object orientation. For spatial reasons, we leave
out non-essential aspects and focus on core elements most
closely impacting the language’s interpretation. A more com-
prehensive presentation of Anzen, as well as a formal de-
scription of its semantics can be found here [17].

Data Types On the top of a handful of primitive types de-
noting numbers and boolean values, Anzen also supports ag-
gregates of objects, called structures. Borrowing from object-
oriented programming languages, methods, constructors and
destructors can be declared along with a structure to com-
partmentalize behavior. Inside these functions, a reserved
self reference allows access to the instance’s internals.
Functions are first-class citizens in Anzen, and are there-

fore allowed to be assigned and passed as arguments to and
returned from other functions. They may also capture iden-
tifiers from their declaration context, effectively forming
function closures and thereby enabling partial application.

Assignment Semantics Anzen’smost distinguishing char-
acteristic lies in the use of three different assignment opera-
tors, each representing a particular assignment semantics:

• An aliasing operator &- assigns an alias on the object
on its right to the reference on its left. Its semantics
is the closest to what is generally understood as an
assignment in languages that abstract over pointers,
such as Python and Java.

• A copy operator := assigns a deep copy of the object’s
value on its right to the reference on its left. If the
left operand was already bound to an object, the copy
operator mutates its value rather than reassigning the
reference to a different one.

• A move operator <- moves the object on its right to
the reference on its left. If the right operand was a
reference, the move operator removes its binding, ef-
fectively leaving it unusable until it is reassigned. This
corresponds to the affine assignment semantics [20]
found in languages such as Rust and C++.

Figure 2 illustrates the three assignment semantics. Notice
that we use the term “memory” rather than “stack” or “heap”.
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Figure 2. Effect of Anzen’s assignment operators. Each il-
lustration depicts the situations before and after a particular
assignment, starting from a state where two variables a andb
are bound to unrelated memory locations, holding the values
8 and 4 respectively. Changes are highlighted in color.

The reason is that we aim at making a clear distinction be-
tween the semantics of Anzen’s operators and the actual
underlying memory model. Whether a reference is a pointer
to heap-allocated memory or a primitive value allocated on
the stack should be irrelevant for the developer. That way
she may focus solely on the semantics of her program, at an
abstraction level that does not bother about the specifics of
compilation, optimization and/or interpretation.

These three operators also serve to specify the parameter
and return value policy in function calls. The use of an alias-
ing operator corresponds to a pass-by-alias, while the use of
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a copy operator corresponds to a pass-by-value policy [15].
The move operator also treats objects as linear resources,
and therefore mimics Rust’s move semantics.

Parameter passing
1 fun f(list: @mut List<Int>) {

2 list.append(new_element <- 5)

3 print(line <- list)

4 }

5

6 var a: @mut <- List<Int>()

7 a.append(new_element <- 4)

8

9 // `a` is passed by value, therefore the

10 // mutation of the `list` parameter in

11 // `f`'s body have no side effects.

12 f(list := a)

13 // Prints "[4, 5]"

14

15 print(line <- a)

16 // Prints "[4]"

Aliasing Control Mechanisms In order to support the
affine semantics of its move operator, Anzen has to keep
track of reference uniqueness [8]. A reference is unique if
there are no other references (i.e. aliases) on the object to
which it is bound. In this case, it cannot appear as the right
operand of a move assignment. Uniqueness is treated as a
fractionable capability, reminiscent to Boyland’s proposal [2].
The intuition is that it is initially obtained in full at allocation,
but gets fractioned every time the reference or one of its alias
appears as the right operand of an aliasing assignment. The
loss of the uniqueness capability is however only temporary,
as a reference can gather all fragments back once its aliases
either go our of scope or are reassigned to another reference.

Uniqueness
1 var a, b, c: @mut Int

2 // `a`, `b` and `c` start unallocated

3 a := 10

4 b <- 20

5 // `a` and `b` get unique

6 c &- a

7 // `a` gets shared, `c` gets borrowed

8 c &- b

9 // `b` gets shared, `a` gets unique

10 b <- a

11 // `a` gets moved

On the top of uniqueness, Anzen also supports reference
and object immutability. The former relates to a restriction on
references. Simply put, variables declared with the keyword
var can be reassigned (i.e. appear as the left the operand
of an aliasing assignment), while those declared with the

keyword let cannot. The latter relates to a restriction on
values. Immutable objects cannot be modified (i.e. appear as
the left operand of a copy or move assignment). Furthermore,
object immutability is treated transitively, meaning that not
only the fields of an immutable object cannot be reassigned,
but their respective values are also considered immutable.
The type qualifier @cst describes immutable values whereas
@mut describes mutating ones. References to immutable (resp.
mutable) objects are said non-mutating (resp. mutating).

Immutability
1 struct Point {

2 var x: @mut Int

3 var y: @mut Int

4 }

5

6 let p: @cst = Point(x <- 42, y <- 1337)

7 p <- Point(x <- 0, y <- 0)

8 // illegal since `p` is immutable

9 p.x <- 12

10 // illegal since `p.x` is immutable, by

11 // transitivity

12 p &- Point(x <- 3, y <- 14)

13 // illegal since `p` is not reassignable

Like uniqueness, object mutability is treated as a capability
which can be fractioned by aliases. Non-mutating references
may borrow an alias to an object referred to by a mutating
reference, in which case the latter becomes non-mutating
for the duration of the loan. The type system guarantees that
mutating references cannot coexist with non-mutating refer-
ences on the same object. However, unlike in most systems,
there is no restriction on the number of mutating references.
This allows mutable self-referential data structures to be
expressed naturally, whereas such an exercise can prove
challenging in more constrained type systems [13].

3 Semantic Analysis
The compiler’s semantic analysis phase consists in the discov-
ery of all expressions’ types and the verification of reference
immutability. It is performed directly on the AST.

3.1 Checking Reference Immutability
Reference immutability is checked with a variant of defi-
nite assignment analysis [7]. Following a particular non-
reassignable variable declaration, the compiler scans all as-
signment where it appears as a left operand and verifies that
it is guaranteed to be definitely unassigned (i.e. unassigned
no matter what execution paths are followed). The analy-
sis further guarantees that all members of an instance be
definitely assigned at the end of its constructor. Therefore,
enforcing their non-reassignability outside of constructors
consists in checking that they never appear as left operand of
an aliasing operator. The advantage of this approach is that
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it does not require any additional bookkeeping for instance
members to be passed along across function boundaries.

3.2 Extracting and Solving Type Constraints
Anzen does not require all declarations to be explicitly typed,
as it is required in C for instance. Consequently, the com-
piler has to deduce omitted type annotations from the ex-
pressions themselves. Fortunately, Anzen’s type system fits
the traditional Hindley-Milner system for which numerous
implementations have already been proposed (e.g. [10, 19]).
Following the observations of Pierce and Turner [16], we
only aim to infer types for local bindings, as well as for
overloaded and generic symbols, while expecting functions’
parameters to be explicitly typed. Therefore, our goal is not
to perform the complete type inference of any arbitrary pro-
gram. The compiler implements type inference by solving
a large constraint system. In a first stage, all expressions
are first associated with a unique type variable, before the
the AST is scanned to extract explicit type annotations and
type constraints. These constraints directly relate to the lan-
guage’s semantics, and are categorized into five groups:

• Equality constraints indicate that two type variables
must be equal.

• Conformance constraints denote a relaxed notion
of equality, that prescribes that one type be compatible
with another.

• Construction constraints require that one type be
the signature of a constructor for the other.

• Let τ and σ be two types andm a identifier, a mem-
bership constraint requires that τ be the type of a
structure with a memberm whose type is equal to σ .

• Disjunction constraints represent choices between
different ways to type an expression.

Once built, the constraint system is solved to find type
bindings for each type variable that has been introduced. This
is achieved by breaking non-trivial constraints into groups of
smaller ones, until only equality constraints remain. These
simply correspond to unification, and are solved by either
assigning type variables to their inferred type, or by ensuring
that existing bindings match. A handful of heuristics are
applied to select which constraints should be solved first,
hopefully reducing the size of the search space by eliminating
unsatisfiable branches as early as possible.

Polymorphic Types Constraints involving polymorphic
(a.k.a. generic) types are rewritten by substituting each poly-
morphic parameter with a fresh variable. For instance, a
polymorphic type of the form ∀a,a × a → U is substituted
with a monomorphic type of the form τ ×τ → U , where τ is
a fresh variable. If the remaining constraints provide enough
context, these fresh variables are then unified with concrete
types, effectively discovering how polymorphic types should
be specialized. This approach is sound, because Anzen delib-
erately does not feature first-class polymorphic values [11].

Conformance Conformance constraints cannot be triv-
ially solved if either of the types it involves is unknown (i.e.
is an unbound type variable). However, information already
inferred can be leveraged to refine a particular constraint.
Assuming the type conformance relation forms a lattice,
solving conformance constraints is equivalent to computing
either the join or the meet of two types. In both cases the
strategy is to form a disjunction of equality constraints for
each known sub-type or super-type, respectively.

Construction and Membership Construction and mem-
bership constraints are rewritten as simple equality con-
straints, once the type owning the member or constructor
involved has been inferred.

Disjunctions Disjunction constraints represent choices,
such as the different overloads of a function. When the solver
encounters a disjunction, it spawns as many sub-solvers as
there are choices, which will all attempt to find a solution.
Those that fail are discarded immediately, whereas others’
solutions are collected and compared to choose the most
specific one, with respect to the number of generic special-
izations and type coercions it involves. The compiler reports
an ambiguous situation if it cannot decide between multiple
solutions based on these criteria.

3.3 Reporting Type Errors
One challenge of type inference is to generate accurate er-
ror reports in case of failure. The complexity of the task
stems from the difficulty to identify precisely the reason
why a particular constraint might be unsatisfiable, in order
to provide the user with relevant feedback. Moreover, while
type inference is confluent for well-typed programs, the or-
der in which constraints are solved may lead to different
results in the presence of errors. Fortunately, by splitting the
extraction of the constraint system and their solving into
two separate steps, our compiler can avoid the left-to-right
bias [19] and find the minimal subset of unsatisfiable con-
straints. Furthermore, each constraint is associated with a
log that keeps a record of the reasons that brought it into
existence. As a result, this information can be leveraged to
trace back an unsatisfiable constraint to the exact point in
the AST from which it originates. A generalization of this
approach is presented in [21].

4 Anzen Intermediate Representation
AIR is a low-level instruction set similar to assembly code
which preserves Anzen’s assignment operators, together
with a handful of high-level concepts such as structures
and higher-order functions. Although the language is not
supposed to be used for writing programs directly, it has a
concrete syntax that can facilitate debugging. We use it to
illustrate various examples in the remainder of this section.
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4.1 Anatomy of an AIR unit
The Anzen compiler treats each source file as single com-
pilation unit which is individually compiled and translated
to AIR. Those units are linked together to form a single
executable AIR program, effectively bringing the support
for separate compilation. A unit is a collection of functions,
that are themselves split into multiple blocks, each associ-
ated with a unique label. These are used to guide control
flow. A function necessarily contains at least two blocks,
labeled entry#0 and exit#0, that denote its entry and exit
points, respectively. Naturally, entry#0 is always the first
block and exit#0 the last one. All instructions of a block are
executed in order until a terminator instruction is reached.
These are instructions that modify control flow (e.g. jumps
and function returns). All blocks are assumed to finish with a
terminator instruction, not followed by any other statement.
Figure 3 depicts the anatomy of a typical AIR unit.

4.2 AIR Instructions
There are two kinds of instructions in AIR. Non-assignable in-
structions only consume references to update the program’s
state, but do not produce any result. On the contrary, assign-
able instructions yield a reference that has to be stored, and
can later appear as an operand to another instruction.

The most significant difference between AIR and Anzen is
that an expression cannot contain other sub-expressions. In-
stead, it should be decomposed into simpler instructions that
store intermediate results into temporary registers. These
registers are Static Single Assignment (SSA) variables [4]
(i.e. variables that are assigned exactly once) which store
references to actual values. In the words of the C language,
a register is a pointer to a pointer to a value. The advan-
tage of this approach is that an SSA register in AIR uniquely
designates a single reference, explicitly exposing how it is
manipulated. Consider for instance the following Anzen pro-
gram, and its corresponding AIR code:

Anzen
1 let sum: @mut <- 19 + 22

2 sum <- sum + 1

AIR
1 %1 = make_ref Int

2 %2 = apply $__iadd, 19, 22

3 move %2, %1

4 %3 = apply $__iadd, %1, 1

5 move %3, %1

Lines 1 to 3 represent the declaration of the variable sum.
At line 1, the instruction make_ref creates a new reference
and assigns it to the register %1. Line 2 computes the addition
of 19 and 22, and assigns the result to the register %2. Line 3
moves the result of this addition to the register representing
the variable sum. Although the instruction corresponds to

an assignment, notice that it does not reassign its target
register %1 (which would violate the SSA property). Instead,
it updates the value of the reference it holds. Finally, line 3
and 4 represent the increment of the variable sum. Again, the
expression in Anzen is decomposed so that the intermediate
result is stored in a temporary register.

4.3 Assignments and Function Calls
AIR features one instruction for each assignment operator in
Anzen. Note that their operands appear in reverse order. For
instance “move 42, %1” reads as “move the value 42 into the
reference held by the register %1”.

Anzen reuses its assignment operators to specify parame-
ter and return value policies in function calls. This principle
is highlighted explicitly in AIR. Before a user function1 is
called, a reference is created for each of its parameters, and
assigned to its respective argument with the appropriate
semantics. Return values are treated similarly, using the re-
served register %0 as the target of assignments corresponding
to return statements. Consider for instance the following
Anzen function, and its corresponding AIR counterpart:

Anzen
1 fun factorial(x: Int) -> Int {

2 if x <= 1 {

3 return <- 1

4 } else {

5 return <- x * factorial(x <- x - 1)

6 }

7 }

AIR
1 fun $exfactorial_Fofi2i : Int -> Int {

2 entry#0:

3 %0 = make_ref Int

4 %2 = apply $__ile, %1, 1

5 branch %2, then#0, else#0

6 then#0:

7 move 1, %0

8 jump exit#0

9 else#0:

10 %3 = make_ref Int

11 %4 = apply $__isub, %1, 1

12 move %4, %3

13 %5 = apply $ex_factorial_Fofi2i, %3

14 %6 = apply $__imul, %1, %5

15 move %6, %0

16 jump exit#0

17 exit#0:

18 ret %0

19 }

1Built-in functions (e.g. the integer addition) refer directly to their operands,
thus not requiring any explicit parameter assignments.
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opcode
operands

external declarations

local function

instruction block

instruction

block label

fun $__iadd : Int,Int -> Int1

fun $__print : Anything -> Nothing2

3

fun $main4 : () -> Nothing {

entry#0:5

%1 = make_ref Int6

%2 = apply $__iadd, 19, 227

move %2, %18

%39 = apply $__iadd, %1, 1

move %3, %110

%4 = apply $__print, %111

jump exit#012

exit#0:13

ret14

}15

Figure 3. Anatomy of an AIR unit.

The reference creation at line 3 corresponds to the func-
tion’s return reference, that is therefore assigned to the re-
served return register %0. Within a function, parameters
are also represented by registers, which by convention are
numbered starting from %1. Thus, line 4 tests whether the
function’s argument is inferior or equal to one. If the test
succeeds, the execution jumps to the block labeled then#0,
assigns 1 to the return register and jumps to the exit block. If
the tests fails, then the execution jumps to the block labeled
else#0 to recursively call the function. Line 10 creates a ref-
erence for its parameter, which gets assigned by move at line
12 with the argument x, subtracted by one. The recursive call
occurs at line 13, and its result is multiplied by the argument
x. Finally, line 15 assigns the result to the return register.

While Anzen supports function overloading and generic
types, all functions in AIR are monomorphic. Hence, the
name of each function in Anzen is mangled in AIR to guar-
antee its uniqueness across a single compilation unit. The
mangling consists in encoding the scope in which the func-
tion is declared, as well as its signature. For instance in the
above example, the name of the Anzen function factorial

is mangled as exfactorial_F0fi2i, where ex denotes the
module in which the function’s defined, and F0fi2i denotes
its signature. Type names are mangled similarly.
Two techniques are used to translate generic functions

into AIR. The first consists of generating a monomorphized
version of a generic function every time a particular spe-
cialization is needed, similar to how code for C++ templates
is generated. In other words, each reference to a generic
function instructs the compiler to clone its body, substitut-
ing generic types for specialized ones. One drawback of this
approach is that it may produce very large AIR units in

the presence of highly generic code. Furthermore and more
importantly, monomorphization requires that the body of a
called function be known during compilation, thus hindering
the separate processing of each unit. To solve these issues,
a second technique is to replace genericity with polymor-
phism, relying on boxing and virtual tables [6, Chapter 3] for
functions and method dispatching (as described in Section 5).
Although monomorphization is preferred for performance
reasons [5], it can only occur under two conditions. First, the
generic function must be declared in the same compilation
unit, so that the compiler can have access to its body during
AIR generation. Second, the monomorphization of a function
must not lead to another monomorphization of itself, with a
different type. The second constraint guarantees that there
is a finite amount of code duplication.

4.4 Higher-Order Functions
As mentioned in Section 2, Anzen is a higher-order pro-
gramming language. In AIR, functions names can appear as
operands to other instructions, thereby making them first-
class citizens. This approach is reminiscent to how function
pointers can be used in C. However, it does not handle func-
tion environments, which are necessary to support function
closures. To solve this problem, AIR features a particular
instruction partial_apply, that computes the partial appli-
cation of a function. As a result, a function closure can be
represented as the partial application of a corresponding
first-order function that accepts captured references as pa-
rameters. This process is commonly referred to as closure
conversion or defunctionalization [18]. The resulting refer-
ence denotes a function that accepts the remaining param-
eters, and can be used as the first operand of an apply or
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another partial_apply instruction, just as any other func-
tion reference. Consider for instance the following Anzen
program, together with its AIR representation:

Anzen
1 fun inc(by x: Int) -> (n: Int) -> Int {

2 return <- fun(n: Int) -> Int {

3 return <- x + n

4 }

5 }

AIR
1 fun $exinc___L_Fni2i: Int,Int -> Int {

2 entry#0:

3 %0 = make_ref Int

4 %3 = apply $__iadd %1, %2

5 move %3, %0

6 jump exit#0

7 exit#0:

8 ret %0

9 }

10

11 fun $exinc_Fxi2Fni2i: Int -> Int -> Int {

12 entry#0:

13 %0 = make_ref Int -> Int

14 %2 = make_ref Int

15 bind %1, %2

16 %3 = partial_apply $exinc___L_Fni2i, %2

17 move %3, %0

18 jump exit#0

19 exit#0:

20 ret %0

21 }

Two AIR functions are generated. The first one corre-
sponds to the anonymous function declared at line 2 of the
Anzen program. Notice that it accepts two arguments, the
first of which corresponding to the identifier x that it cap-
tures in its closure. The second one corresponds to the inc
function in the Anzen program. Line 13 corresponds to the
creation of a reference for the captured identifier, stored in
%2. Note that captures are always performed by alias, which
justifies the aliasing assignment at line 14. The reference in
%2 is used to partially apply $exinc___L_Fni2i, resulting in
the creation of a function closure which is assigned by move
to the return register at line 16.

4.5 Structure Instances and Methods
Structure instances are allocated with the alloc instruction
which essentially creates an aggregate of references for each
member of the instance. Constructors, destructors and other
methods are not stored with the instance. Instead, they are
defined as separate AIR functions that accept an additional
parameter corresponding to self. Field names are forgotten

in AIR. Consequently, members must be referred by an in-
dex denoting their position in the aggregate. By convention,
members are indexed in the same order as they appear in
Anzen’s type definition. Access to particular instance mem-
ber is achieved with the extract instruction. As methods
are first-class citizen as well, assigning one to a variable has
to create a partial application of its underlying AIR coun-
terpart, in order to bind the self parameter. Consider for
instance the following program, together with a part of its
AIR representation. For the sake of legibility, function names
are not mangled as they would be in an actual AIR unit:

Anzen
1 struct Counter {

2 let value

3 new() {

4 self.value <- 0

5 }

6 mutating fun next() -> Int {

7 self.value <- self.value + 1

8 return := self.value

9 }

10 }

11

12 let counter <- Counter()

13 let next &- counter.next

AIR
1 fun $Counter_next : (Counter) -> Int {

2 entry#0:

3 %0 = make_ref Int

4 %2 = extract %1, 0

5 %3 = apply $__iadd, %2, 1

6 move %3, %2

7 %4 = extract %1, 0

8 copy %4, %0

9 jump exit#0

10 exit#0:

11 ret %0

12 }

13

14 fun $main : () -> Nothing {

15 entry#0:

16 %1 = make_ref Counter

17 %2 = apply Counter_new

18 move %2, %1

19 %3 = make_ref () -> Int

20 %4 = partial_apply Counter_next, %1

21 // ...

22 }

The first function implements the Counter.next method.
The value member is extracted at line 4, and incremented
by one over the next two lines. It is finally copied at line 8
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to the return register. The second function is a snippet of
the main function. Counter’s constructor is applied at line
17, producing a new instance in register %2. It is reused as
an operand to the partial application at line 20, producing
a closure that binds the method to this particular instance.
Consequently, this results in a function () -> Int that ap-
plies Counter.next for a particular instance of self.

5 AIR Interpreter
The Anzen compiler comprises an interpreter to run AIR pro-
grams, effectively providing a runtime system for Anzen’s
executionmodel. It is implemented as a register-based virtual
machine [9]. While such interpreters are usually more com-
plex than their stack-based counterparts, they can describe
memory manipulations more faithfully. Our interpreter con-
sists of an instruction pointer that keeps track of the next
instruction to execute, a call stack that stores pointers to
heap-allocated reference objects, and a frame pointer that
is used to compute the runtime address of a particular AIR
register. The stack is logically split into multiple call frames,
each of them representing the execution context of a partic-
ular function. A call frame comprises all the locally available
registers of the corresponding function, which are referred
to as its locals, as well as a return instruction pointer, which
indicates the next instruction to execute once the function
returns. Each function application (i.e. the execution of an
apply instruction) adds a new call frame onto the stack, and
modifies the interpreter’s frame pointer so that it always
points to the return register (i.e. %0) of the current call frame.
Consequently, the runtime address of a given AIR register
can be computed as an offset to the frame pointer. Figure 4
depicts the anatomy of a call stack. The particular example
that is illustrated is detailed later in this section.

5.1 Memory Model
Reference objects are four-words data structures that wrap
a pointer to some heap-allocated memory, representing an
actual payload (e.g. a number), together with a three-word
value describing its current capabilities. These are used to en-
force the aliasing control mechanisms discussed in Section 2.
Note that the interpreter uses reference objects for all local
values, including primitive ones. This is a departure from
most virtual machines’ implementations, which generally
store simple values directly onto the stack. This strategy
usually yields better performances, as it can avoid the cost of
pointer indirection for data that fits into the stack. However,
we take a different approach to simplify the implementation
of Anzen’s assignment operators, as explained later.

Values are boxed into containers, so as to represent them
uniformly inmemory. This allows to support the type erasure
applied on generic functions that could not be monomor-
phized during AIR code generation (see Section 4.3). Such
containers are defined as three-words structures. The first

two words are used to store either a simple data (e.g. a num-
ber), or a pointer to a more complex value stored in heap-
allocated memory (e.g. a large structure instance). The third
word stores a pointer to its virtual table. The latter lets the
interpreter retrieve the implementation of the functions re-
lated to a particular value type, in order to perform dynamic
dispatch. In addition to the functions corresponding to user
methods, all virtual tables define routines that allow copying
and destroying values. These are defined internally for all
data types, and are part of the runtime library.

5.2 Interpreting Assignments
Most of the complexity surrounding AIR’s interpretation
relates to the handling of assignments. Fortunately, the two-
level indirection of our interpreter’s memory model greatly
eases the task. Aliasing assignments consist in copying the
value of the pointer stored in its source’s reference object.
Copy assignments are carried out by reassigning copy of
their source’s value to their target’s value, obtained by call-
ing the copy routine defined in its virtual table. Move as-
signments are processed similarly, but additionally unset the
pointer stored in their source.

Structure Instances Since structure instances are repre-
sented as aggregates of pointers to references, extracting a
member boils down to a copy of the corresponding pointer
to a local register, which as a result can be used like any
other reference. The strategy is sound because of the two
level of indirection. Indeed, as the pointer to the reference is
copied rather than the reference object itself, modifications
thereupon also affect the member’s value.

Parameters and Return Values In the previous section,
we saw that the passing of parameters and return values is
performed by the means of regular assignments. This means
that these references actually denote the reference objects
representing the function’s parameters and return register
in the next call frame’s locals. Consequently, their respective
pointers can be simply copied into the next call frame.

Reference Capabilities Asmentioned above, reference ob-
jects are associated with metadata describing their current
capabilities. This metadata defines the state of the reference
and whether it is mutating. Upon assignment, the interpreter
first checks this information to verify that the assignment is
legal and then updates it so that it reflects the situation once
the assignment has been performed.

A reference can be in either of five states. The unallocated
state denotes references that are not bound to any value
container. The unique state denotes unaliased references.
The shared state denotes unique references having fractioned
their uniqueness. It is further associated with the number
of fragments that have been formed. The borrowed state
denotes references having borrowed a uniqueness fragment.
It is further associated with a pointer to the lending reference.
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0x000 %1 0xf00

0x048 %2 0xf38

0x088 ret. inst. $main:5

0x0c8 %0 0xf38

0x108 %1 0xf00

0x148 %2 0xf58

:RefObject
ptr 0xf20

state s(1)

:RefObject
ptr 0xf78

state u

:RefObject
ptr 0xf20

state b(f00)

:Container
value 42

vtable

:Container
value 42

vtable

$main’s call frame

$f’s call frame

$f’s locals

$f’s return instruction
pointer

stack growth
stack heap

Figure 4. Snapshot of the interpreter’s memory while executing an AIR program.

The moved state denotes moved references. The constraints
enforced by each assignment operator and the transitions
between each state are formally defined in [17].

5.3 Example
Consider the following AIR program:

1 fun $main : () -> Nothing {

2 entry#0:

3 %1 = make_ref Int

4 move 42, %1

5 %2 = apply $f, %1

6 jump exit#0

7 exit#0:

8 ret %0

9 }

10

11 fun $f : (Int) -> Int {

12 entry#0:

13 %0 = make_ref Int

14 %2 = make_ref Int

15 bind %1, %2

16 copy %2, %0

17 jump exit#0

18 exit#0:

19 ret %0

20 }

Figure 4 depicts a snapshot of the interpreter’s memory
before executing the ret instruction at line 19. Hexadecimal
values (i.e. numbers starting with 0x) represent memory
addresses. For simplicity, we neglect mutability capabilities
and focus on reference states, using the letters u, s and b to
denote the unique, shared and borrowed states, respectively.
Line 3 creates a reference object stored at 0xf00 and as-

signs its pointer to the register %1 in the $main function’s
call frame. It is assigned by move at line 4, leading to the
creation of a value container stored at 0xf20. Line 5 applies
the function $f, associating %0 (resp. %1) in $f’s call frame to
%2 (resp. %1) in $main’s call frame. In function $f, line 13 and
14 create the reference objects stored at 0xf38 and 0xf58,
respectively. %2 is assigned by alias at line 15, resulting in a
duplication of the pointer to the container stored at 0xf20.
Reference capabilities are updated to indicate that %1 and %2

are respectively shared and borrowed. Line 16 copies %2’s
value into a new container, stored at the address 0xf78, and
assigned to the return register. The assignment also updates
the latter’s capability to specify that is is unique.

6 Related Work
Our implementation borrows heavily from the design of
Apple’s Swift compiler [1]. Swift too is translated to an in-
termediate representation, called Swift Intermediate Lan-
guage (SIL), which is leveraged to perform various language-
specific optimizations, before programs are fed to LLVM [12]
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and eventually compiled into machine code. AIR shares some
similarities with SIL. Both languages are SSA-form [4] IRs
with constructs designed to ease the implementation of their
high-level counterpart. Although far more modest in terms
of supported features, AIR distinguishes itself by its support
for different explicit assignment semantics.

Intermediate languages also appear in multiple other lan-
guages’ compilers. Rust for instance performs static checks
for its elaborate aliasing control mechanisms in a so-called
mid-level intermediate representation [14]. However, Rust’s
intermediate language stays at a much higher-level than AIR
and only expands Rust’s construct into simpler instructions,
better-suited for static pointer analysis.

7 Conclusion
We have presented an implementation of a compiler for the
Anzen [17], a programming language with explicit and con-
trollable memory assignment semantics. Our work aims to
set a reference implementation for future developments and
extensions of the Anzen programming language. All sources
are available at https://github.com/anzen-lang/anzen.
Our implementation transpiles Anzen sources to an in-

termediate language called the Anzen Intermediate Repre-
sentation (AIR), the main contribution of this paper. AIR
is designed to ease the analysis and evaluation of Anzen’s
statements, by exposing how references are manipulated in
simple instructions. We have also described a virtual ma-
chine to execute AIR programs, that uses two levels of in-
direction to represent references as first-class objects. Type
capabilities [3] are associated with each reference to track
uniqueness and immutability at runtime.
Future works include the implementation of language-

specific optimizations. In particular, static knowledge on a
given program could be leveraged to avoid indirection in situ-
ations where first-class references are not required (i.e. in the
absence of aliasing). Determining such situations is straight-
forward, thanks to Anzen’s explicit assignment operators.
Immutability also offers useful hypotheses [8]. Another excit-
ing perspective involves Just-in-Time (JIT) compilation. One
promising lead is to leverage AIR’s closeness with LLVM [12]
to leverage the latter’s JIT compilation support.

While we have described AIR and its interpretation in the
context of Anzen, we believe this intermediate language to
be suitable to express other imperative-oriented languages
that advocate for precise memory management strategies.
Its native support for higher order functions qualifies it to
represent functional patterns as well.
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