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Research Statement

My research advances methods and techniques that empower developers to write expressive, effi-
cient, and reliable software. | gravitate toward model checking, formal verification, and programming
language design, with a particular focus on advanced type systems.

My background as both researcher and software engineer has forged an interest in approaches
bridging theory and practice. | enjoy crafting rigorously defined systems that are concise yet
expressive and accessible, | value techniques that allow powerful software abstractions to interact
with the constraints of hardware systems efficiently, and | strive to facilitate knowledge transfer
between academia and industry through collaborations.

After studying type-based approaches for memory safety [11] and data structures for symbolic
model checking [12], my research has focused on value-oriented programming for high-level
systems programming [14]. The remainder of this statement gives a summary of these contributions,
describes my work, and concludes with future research directions.

s \/a|ue-oriented programming

A fundamental challenge for the adoption of formal methods is the semantic gap between the
formalisms to reason about software and the techniques to implement it efficiently. At the center of
this rift lie reference semantics, which impedes formal reasoning by introducing aliasing, a condition
where two or more live variables refer to the same memory location. Specifically, pointers and
references restrict the machine's ability to reason about code without considering the whole program,
introducing combinatorial explosion. To mitigate this problem, verification techniques must either
severely restrict mutation patterns, demand sophisticated annotations, lose accuracy, or suffer
performance overhead to defer checks at run-time.

Mutable value semantics is a way to address this issue. In its strictest form, it is a value-oriented
programming discipline that excludes pointers and references from the programming model, de
facto preventing variables from sharing mutable state. However, unlike functional programming,
mutable value semantics can express part-wise in-place mutations across function boundaries, thereby
providing predictable performance guarantees on mutating algorithms.

My work on mutable value semantics started with a study of Swift [9], a language that supports
this discipline. | formalized parts of Swift's type system to discover bugs in its implementation,
which lead to a collaboration with partners from Google and Adobe on a core calculus to formally
describe mutable value semantics [14]. We formalized a subset of Swift, proved its soundness with
respect to type and memory safety, and described optimizing strategies to compile efficient programs.
| implemented a compiler based on these techniques [13] to measure the performance of mutable
value semantics against Scala's functional updates and C++ reference model, demonstrating the
relevance of Swift's approach for safe and efficient programs.
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| currently collaborate with Adobe’s Software Technology Lab on the design of a new programming
language, called Val [1], which builds on my previous results. Val codifies best practices from
performance-critical programming into its type system to enforce local reasoning, uphold memory
safety, and reliably identify unnecessary memory allocations.

Val's main novelty is a feature called projections, which addresses the view-update problem,
a situation where mutations applied to a transformed view of an object must be applied back to
that object. Projections generalize a technique developed in Swift to implement lenses efficiently—
without dynamic allocation—by transforming code into a continuation passing style to avoid the
complexity costs of annotation systems meant to track object lifetimes.

Memory safety

Access to unallocated (e.g., use-after-free) or uninitialized memory can cause insidious bugs that
are difficult to identify and may open vulnerability issues. Memory safety is defined as freedom
from this kind of bug and can be upheld in different ways. The main challenge faced by approaches
operating ahead-of-type—before the program runs—is to deal with aliasing.

My dissertation [5] reviewed type-based approaches to guarantee memory safety, formally
described a core calculus to reason about program semantics with respect to memory safety, and
devised a type system that soundly enforces memory safety. | designed two programming languages
based on this work. The first was a dialect of Javascript that showcased the use of different
assignment operators in conjunction with type capabilities to avoid mutation through unintended
sharing [7]. The second was a general-purpose programming language whose goal was to study the
interplay between assignment semantics, aliasing control mechanisms, and other language constructs,
such as generic types and higher-order functions [8].

My research along this axis continued with the development of a low-level intermediate represen-
tation to introduce memory safety checks in a compiler pipeline with colleagues from the University
of Geneva [11, 10]. The main novelty of this work was to leverage control flow information to refine
static assumptions about aliasing, thereby reducing the need for overly conservative restrictions.

s Symbolic model checking

Model checking consists of exploring the states of a system to verify if a given property holds
or identify counter-examples. An important limitation of this approach is state space explosion, a
phenomenon that occurs when the number of states of a model grows exponentially.

One approach to tackle this issue is symbolic model checking, which compresses state spaces
into memory-efficient data structures, typically decision diagrams. These compression techniques can
not only dramatically reduce the memory footprint of a state space but also improve the efficiency
of set-based operations.

| developed a variant of decision diagrams, called a map family decision diagram (MFDD), which
generalizes binary and data decision diagrams to encode and apply operations on large families of
partial functions. | showed how MFDDs can be used to verify specifications expressed in terms of
constraint-based systems [15, 12, 6], and developed a model checking tool based on this approach [4].
This work has resulted in a series of lectures that are now taught at the University of Geneva.
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Earlier in my doctoral studies, | worked on cost linear temporal logic [3], which extends linear
temporal logic with the ability to count events in systems with infinite behaviors. The main
contribution of this work was a method to discover counter bounds as an extension of classical
emptiness check methods for w-automata [2], a class of automata that run on infinite inputs.

The tension between algebraic semantic reasoning and unconstrained mutation has been well
known at least since Backus' 1977 Turing Award paper introducing functional programming. On one
hand, functional programming gave rise to languages and tools whose power and expressiveness go
beyond what could have only been dreamed a few decades ago. On the other, performance-critical
applications often cannot afford the run-time costs of functional abstractions.

In response to this issue, tremendous efforts have been poured into methods and techniques
preventing the unintended consequences of shared mutation through aliasing. Perhaps the most
successful product of this work is Rust, a language that supports common low-level programming
idioms yet guarantees safety through its type system. However, Rust is a complex language, to the
point that “fighting its compiler” has become a meme among programmers.

| aim to tackle this problem and settle the apparent struggle between correctness and efficiency.
A key insight from my ongoing collaborations with practitioners is that neither sophisticated aliasing
restrictions nor pure functional programming are solutions in practice. Instead, developers rely
on strict coding discipline to uphold local reasoning without loss of efficiency, leveraging familiar
concepts such as type encapsulation and parameter passing conventions.

My goal is to devise sound mathematical foundations to capture and enforce these practices under
the umbrella of mutable value semantics, thereby allowing idealized formal models of computation
and efficient mutating algorithms to coexist. These foundations will lead the way to further advance
the state of the art along these axes:

Software verification Mutable value semantics offers an opportunity to revisit approaches devel-
oped for pure functional systems that failed to scale to systems with shared mutation. | intend
to build on this observation to explore automated verification techniques, in particular using
typestates and refinement types.

Structured concurrency Concurrency is an old yet still timely challenge. Most applications
rely on unstructured and error-prone synchronization mechanisms that do not compose well.
Upholding value independence uncovers leads to implementing systems that do not surface
low-level synchronization primitives and can guarantee thread safety by construction.

Composition of safe and unsafe languages The experience of interoperating between safe and
unsafe languages is currently undermined by a lack of mechanisms to mediate memory access,
therefore compelling developers to enforce all guarantees manually. | believe this burden can be
lifted by developing new techniques to define richer foreign function interfaces.

A cross-cutting constraint of my research will be to develop approaches that are not only rooted
in solid theoretical foundations but also practical, scalable, amenable to gradual adoption, and
suitable to performance-critical domains. By maintaining strong collaborations with the industry in
parallel to my research, | intend to provide a clear path toward safer and more efficient software.
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